1
0
mirror of https://github.com/UzixLS/zx-sizif-xxs.git synced 2025-07-19 07:11:28 +03:00

initial add fpga sources

This commit is contained in:
UzixLS
2021-05-02 21:49:00 +03:00
parent 2edde64a92
commit 1888a76d79
29 changed files with 5758 additions and 0 deletions

13
fpga/syn/clocks.sdc Executable file
View File

@ -0,0 +1,13 @@
create_clock -period 28MHz -name {clk28} [get_ports {clk_in}]
# clkcpu 3.5 or 7 MHz
create_generated_clock -name {clkcpu} -divide_by 4 -source [get_ports {clk_in}] [get_registers {cpucontrol:cpucontrol0|clkcpu}]
# hc0[2] 3.5 MHz
create_generated_clock -name {hc0_2} -divide_by 8 -source [get_ports {clk_in}] [get_registers {screen:screen0|hc0[2]}]
# hsync len 4.7uS, 14e6/(1/4.7e-6) ~= 65
create_generated_clock -name {hsync} -divide_by 126 -source [get_ports {clk_in}] [get_registers {screen:screen0|hsync}]
derive_pll_clocks
derive_clocks -period 14MHz

3
fpga/syn/ip/asmi.qip Executable file
View File

@ -0,0 +1,3 @@
set_global_assignment -name IP_TOOL_NAME "ALTASMI_PARALLEL"
set_global_assignment -name IP_TOOL_VERSION "13.0"
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) "asmi.v"]

996
fpga/syn/ip/asmi.v Executable file
View File

@ -0,0 +1,996 @@
// megafunction wizard: %ALTASMI_PARALLEL%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: ALTASMI_PARALLEL
// ============================================================
// File Name: asmi.v
// Megafunction Name(s):
// ALTASMI_PARALLEL
//
// Simulation Library Files(s):
//
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 13.0.1 Build 232 06/12/2013 SP 1 SJ Full Version
// ************************************************************
//Copyright (C) 1991-2013 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
//altasmi_parallel CBX_AUTO_BLACKBOX="ALL" DATA_WIDTH="STANDARD" DEVICE_FAMILY="Cyclone" EPCS_TYPE="EPCS4" PAGE_SIZE=1 PORT_BULK_ERASE="PORT_UNUSED" PORT_DIE_ERASE="PORT_UNUSED" PORT_EN4B_ADDR="PORT_UNUSED" PORT_FAST_READ="PORT_UNUSED" PORT_ILLEGAL_ERASE="PORT_UNUSED" PORT_ILLEGAL_WRITE="PORT_UNUSED" PORT_RDID_OUT="PORT_UNUSED" PORT_READ_ADDRESS="PORT_UNUSED" PORT_READ_DUMMYCLK="PORT_UNUSED" PORT_READ_RDID="PORT_UNUSED" PORT_READ_SID="PORT_UNUSED" PORT_READ_STATUS="PORT_UNUSED" PORT_SECTOR_ERASE="PORT_UNUSED" PORT_SECTOR_PROTECT="PORT_UNUSED" PORT_SHIFT_BYTES="PORT_UNUSED" PORT_WREN="PORT_UNUSED" PORT_WRITE="PORT_UNUSED" USE_ASMIBLOCK="ON" USE_EAB="ON" WRITE_DUMMY_CLK=0 addr busy clkin data_valid dataout rden read reset INTENDED_DEVICE_FAMILY="Cyclone" ALTERA_INTERNAL_OPTIONS=SUPPRESS_DA_RULE_INTERNAL=C106
//VERSION_BEGIN 13.0 cbx_a_gray2bin 2013:06:12:18:03:43:SJ cbx_a_graycounter 2013:06:12:18:03:43:SJ cbx_altasmi_parallel 2013:06:12:18:03:43:SJ cbx_altdpram 2013:06:12:18:03:43:SJ cbx_altsyncram 2013:06:12:18:03:43:SJ cbx_arriav 2013:06:12:18:03:43:SJ cbx_cyclone 2013:06:12:18:03:43:SJ cbx_cycloneii 2013:06:12:18:03:43:SJ cbx_fifo_common 2013:06:12:18:03:43:SJ cbx_lpm_add_sub 2013:06:12:18:03:43:SJ cbx_lpm_compare 2013:06:12:18:03:43:SJ cbx_lpm_counter 2013:06:12:18:03:43:SJ cbx_lpm_decode 2013:06:12:18:03:43:SJ cbx_lpm_mux 2013:06:12:18:03:43:SJ cbx_mgl 2013:06:12:18:05:10:SJ cbx_scfifo 2013:06:12:18:03:43:SJ cbx_stratix 2013:06:12:18:03:43:SJ cbx_stratixii 2013:06:12:18:03:43:SJ cbx_stratixiii 2013:06:12:18:03:43:SJ cbx_stratixv 2013:06:12:18:03:43:SJ cbx_util_mgl 2013:06:12:18:03:43:SJ VERSION_END
// synthesis VERILOG_INPUT_VERSION VERILOG_2001
// altera message_off 10463
//synthesis_resources = a_graycounter 3 cyclone_asmiblock 1 lut 74 mux21 1
//synopsys translate_off
`timescale 1 ps / 1 ps
//synopsys translate_on
(* ALTERA_ATTRIBUTE = {"SUPPRESS_DA_RULE_INTERNAL=C106"} *)
module asmi_altasmi_parallel_gqd2
(
addr,
busy,
clkin,
data_valid,
dataout,
rden,
read,
reset) /* synthesis synthesis_clearbox=2 */;
input [23:0] addr;
output busy;
input clkin;
output data_valid;
output [7:0] dataout;
input rden;
input read;
input reset;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri0 read;
tri0 reset;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire [2:0] wire_addbyte_cntr_q;
wire [2:0] wire_gen_cntr_q;
wire [1:0] wire_stage_cntr_q;
wire wire_cyclone_asmiblock2_data0out;
reg add_msb_reg;
wire wire_add_msb_reg_ena;
wire [23:0] wire_addr_reg_d;
reg [23:0] addr_reg;
wire [23:0] wire_addr_reg_ena;
wire [7:0] wire_asmi_opcode_reg_d;
reg [7:0] asmi_opcode_reg;
wire [7:0] wire_asmi_opcode_reg_ena;
reg busy_det_reg;
reg clr_read_reg;
reg clr_read_reg2;
reg dffe3;
reg dvalid_reg;
wire wire_dvalid_reg_ena;
wire wire_dvalid_reg_sclr;
reg dvalid_reg2;
reg end1_cyc_reg;
reg end1_cyc_reg2;
reg end_op_hdlyreg;
reg end_op_reg;
reg end_rbyte_reg;
wire wire_end_rbyte_reg_ena;
wire wire_end_rbyte_reg_sclr;
reg end_read_reg;
reg ncs_reg;
wire wire_ncs_reg_ena;
wire wire_ncs_reg_sclr;
wire [7:0] wire_read_data_reg_d;
reg [7:0] read_data_reg;
wire [7:0] wire_read_data_reg_ena;
wire [7:0] wire_read_dout_reg_d;
reg [7:0] read_dout_reg;
wire [7:0] wire_read_dout_reg_ena;
reg read_reg;
wire wire_read_reg_ena;
reg shift_op_reg;
reg stage2_reg;
reg stage3_reg;
reg stage4_reg;
wire wire_mux211_dataout;
wire addr_overdie;
wire addr_overdie_pos;
wire [23:0] addr_reg_overdie;
wire [7:0] b4addr_opcode;
wire [7:0] berase_opcode;
wire busy_wire;
wire clkin_wire;
wire clr_addmsb_wire;
wire clr_endrbyte_wire;
wire clr_read_wire;
wire clr_read_wire2;
wire clr_write_wire2;
wire data0out_wire;
wire data_valid_wire;
wire [3:0] datain_wire;
wire [3:0] dataout_wire;
wire [7:0] derase_opcode;
wire do_4baddr;
wire do_bulk_erase;
wire do_die_erase;
wire do_fast_read;
wire do_fread_epcq;
wire do_freadwrv_polling;
wire do_memadd;
wire do_polling;
wire do_read;
wire do_read_nonvolatile;
wire do_read_rdid;
wire do_read_sid;
wire do_read_stat;
wire do_read_volatile;
wire do_sec_erase;
wire do_sec_prot;
wire do_sprot_polling;
wire do_wait_dummyclk;
wire do_wren;
wire do_write;
wire do_write_polling;
wire do_write_volatile;
wire end1_cyc_gen_cntr_wire;
wire end1_cyc_normal_in_wire;
wire end1_cyc_reg_in_wire;
wire end_add_cycle;
wire end_add_cycle_mux_datab_wire;
wire end_fast_read;
wire end_one_cyc_pos;
wire end_one_cycle;
wire end_op_wire;
wire end_operation;
wire end_ophdly;
wire end_pgwr_data;
wire end_read;
wire end_read_byte;
wire [7:0] fast_read_opcode;
wire freadwrv_sdoin;
wire in_operation;
wire load_opcode;
wire memadd_sdoin;
wire not_busy;
wire oe_wire;
wire [0:0] pagewr_buf_not_empty;
wire rden_wire;
wire [7:0] rdid_opcode;
wire [7:0] rdummyclk_opcode;
wire [7:0] read_data_reg_in_wire;
wire [7:0] read_opcode;
wire read_rdid_wire;
wire read_sid_wire;
wire read_wire;
wire [7:0] rflagstat_opcode;
wire [7:0] rnvdummyclk_opcode;
wire [7:0] rsid_opcode;
wire rsid_sdoin;
wire [7:0] rstat_opcode;
wire scein_wire;
wire sdoin_wire;
wire sec_protect_wire;
wire [7:0] secprot_opcode;
wire secprot_sdoin;
wire [7:0] serase_opcode;
wire shift_opcode;
wire shift_opdata;
wire shift_pgwr_data;
wire st_busy_wire;
wire stage2_wire;
wire stage3_wire;
wire stage4_wire;
wire start_frpoll;
wire start_poll;
wire start_sppoll;
wire start_wrpoll;
wire to_sdoin_wire;
wire [7:0] wren_opcode;
wire wren_wire;
wire [7:0] write_opcode;
wire write_prot_true;
wire write_sdoin;
wire [7:0] wrvolatile_opcode;
a_graycounter addbyte_cntr
(
.aclr(reset),
.clk_en((((((wire_stage_cntr_q[1] & wire_stage_cntr_q[0]) & end_one_cyc_pos) & (((((((do_read_sid | do_write) | do_sec_erase) | do_die_erase) | do_read_rdid) | do_read) | do_fast_read) | do_read_nonvolatile)) | addr_overdie) | end_operation)),
.clock((~ clkin_wire)),
.q(wire_addbyte_cntr_q),
.qbin(),
.sclr((end_operation | addr_overdie))
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.cnt_en(1'b1),
.updown(1'b1)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
addbyte_cntr.width = 3,
addbyte_cntr.lpm_type = "a_graycounter";
a_graycounter gen_cntr
(
.aclr(reset),
.clk_en((((in_operation & (~ end_ophdly)) | do_wait_dummyclk) | addr_overdie)),
.clock(clkin_wire),
.q(wire_gen_cntr_q),
.qbin(),
.sclr(((end1_cyc_reg_in_wire | addr_overdie) | do_wait_dummyclk))
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.cnt_en(1'b1),
.updown(1'b1)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
gen_cntr.width = 3,
gen_cntr.lpm_type = "a_graycounter";
a_graycounter stage_cntr
(
.aclr(reset),
.clk_en(((((((((((((((in_operation & end_one_cycle) & (~ (stage3_wire & (~ end_add_cycle)))) & (~ (stage4_wire & (~ end_read)))) & (~ (stage4_wire & (~ end_fast_read)))) & (~ ((((do_write | do_sec_erase) | do_die_erase) | do_bulk_erase) & write_prot_true))) & (~ (do_write & (~ pagewr_buf_not_empty[0])))) & (~ (stage3_wire & st_busy_wire))) & (~ ((do_write & shift_pgwr_data) & (~ end_pgwr_data)))) & (~ (stage2_wire & do_wren))) & (~ ((((stage3_wire & (do_sec_erase | do_die_erase)) & (~ do_wren)) & (~ do_read_stat)) & (~ do_read_rdid)))) & (~ (stage3_wire & ((do_write_volatile | do_read_volatile) | do_read_nonvolatile)))) | ((stage3_wire & do_fast_read) & do_wait_dummyclk)) | addr_overdie) | end_ophdly)),
.clock(clkin_wire),
.q(wire_stage_cntr_q),
.qbin(),
.sclr((end_operation | addr_overdie))
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.cnt_en(1'b1),
.updown(1'b1)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
stage_cntr.width = 2,
stage_cntr.lpm_type = "a_graycounter";
cyclone_asmiblock cyclone_asmiblock2
(
.data0out(wire_cyclone_asmiblock2_data0out),
.dclkin(clkin_wire),
.oe(oe_wire),
.scein(scein_wire),
.sdoin((sdoin_wire | datain_wire[0])));
// synopsys translate_off
initial
add_msb_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) add_msb_reg <= 1'b0;
else if (wire_add_msb_reg_ena == 1'b1)
if (clr_addmsb_wire == 1'b1) add_msb_reg <= 1'b0;
else add_msb_reg <= addr_reg[23];
assign
wire_add_msb_reg_ena = ((((((((do_read | do_fast_read) | do_write) | do_sec_erase) | do_die_erase) & (~ (((do_write | do_sec_erase) | do_die_erase) & (~ do_memadd)))) & wire_stage_cntr_q[1]) & wire_stage_cntr_q[0]) | clr_addmsb_wire);
// synopsys translate_off
initial
addr_reg[0:0] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[0:0] <= 1'b0;
else if (wire_addr_reg_ena[0:0] == 1'b1) addr_reg[0:0] <= wire_addr_reg_d[0:0];
// synopsys translate_off
initial
addr_reg[1:1] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[1:1] <= 1'b0;
else if (wire_addr_reg_ena[1:1] == 1'b1) addr_reg[1:1] <= wire_addr_reg_d[1:1];
// synopsys translate_off
initial
addr_reg[2:2] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[2:2] <= 1'b0;
else if (wire_addr_reg_ena[2:2] == 1'b1) addr_reg[2:2] <= wire_addr_reg_d[2:2];
// synopsys translate_off
initial
addr_reg[3:3] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[3:3] <= 1'b0;
else if (wire_addr_reg_ena[3:3] == 1'b1) addr_reg[3:3] <= wire_addr_reg_d[3:3];
// synopsys translate_off
initial
addr_reg[4:4] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[4:4] <= 1'b0;
else if (wire_addr_reg_ena[4:4] == 1'b1) addr_reg[4:4] <= wire_addr_reg_d[4:4];
// synopsys translate_off
initial
addr_reg[5:5] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[5:5] <= 1'b0;
else if (wire_addr_reg_ena[5:5] == 1'b1) addr_reg[5:5] <= wire_addr_reg_d[5:5];
// synopsys translate_off
initial
addr_reg[6:6] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[6:6] <= 1'b0;
else if (wire_addr_reg_ena[6:6] == 1'b1) addr_reg[6:6] <= wire_addr_reg_d[6:6];
// synopsys translate_off
initial
addr_reg[7:7] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[7:7] <= 1'b0;
else if (wire_addr_reg_ena[7:7] == 1'b1) addr_reg[7:7] <= wire_addr_reg_d[7:7];
// synopsys translate_off
initial
addr_reg[8:8] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[8:8] <= 1'b0;
else if (wire_addr_reg_ena[8:8] == 1'b1) addr_reg[8:8] <= wire_addr_reg_d[8:8];
// synopsys translate_off
initial
addr_reg[9:9] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[9:9] <= 1'b0;
else if (wire_addr_reg_ena[9:9] == 1'b1) addr_reg[9:9] <= wire_addr_reg_d[9:9];
// synopsys translate_off
initial
addr_reg[10:10] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[10:10] <= 1'b0;
else if (wire_addr_reg_ena[10:10] == 1'b1) addr_reg[10:10] <= wire_addr_reg_d[10:10];
// synopsys translate_off
initial
addr_reg[11:11] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[11:11] <= 1'b0;
else if (wire_addr_reg_ena[11:11] == 1'b1) addr_reg[11:11] <= wire_addr_reg_d[11:11];
// synopsys translate_off
initial
addr_reg[12:12] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[12:12] <= 1'b0;
else if (wire_addr_reg_ena[12:12] == 1'b1) addr_reg[12:12] <= wire_addr_reg_d[12:12];
// synopsys translate_off
initial
addr_reg[13:13] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[13:13] <= 1'b0;
else if (wire_addr_reg_ena[13:13] == 1'b1) addr_reg[13:13] <= wire_addr_reg_d[13:13];
// synopsys translate_off
initial
addr_reg[14:14] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[14:14] <= 1'b0;
else if (wire_addr_reg_ena[14:14] == 1'b1) addr_reg[14:14] <= wire_addr_reg_d[14:14];
// synopsys translate_off
initial
addr_reg[15:15] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[15:15] <= 1'b0;
else if (wire_addr_reg_ena[15:15] == 1'b1) addr_reg[15:15] <= wire_addr_reg_d[15:15];
// synopsys translate_off
initial
addr_reg[16:16] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[16:16] <= 1'b0;
else if (wire_addr_reg_ena[16:16] == 1'b1) addr_reg[16:16] <= wire_addr_reg_d[16:16];
// synopsys translate_off
initial
addr_reg[17:17] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[17:17] <= 1'b0;
else if (wire_addr_reg_ena[17:17] == 1'b1) addr_reg[17:17] <= wire_addr_reg_d[17:17];
// synopsys translate_off
initial
addr_reg[18:18] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[18:18] <= 1'b0;
else if (wire_addr_reg_ena[18:18] == 1'b1) addr_reg[18:18] <= wire_addr_reg_d[18:18];
// synopsys translate_off
initial
addr_reg[19:19] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[19:19] <= 1'b0;
else if (wire_addr_reg_ena[19:19] == 1'b1) addr_reg[19:19] <= wire_addr_reg_d[19:19];
// synopsys translate_off
initial
addr_reg[20:20] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[20:20] <= 1'b0;
else if (wire_addr_reg_ena[20:20] == 1'b1) addr_reg[20:20] <= wire_addr_reg_d[20:20];
// synopsys translate_off
initial
addr_reg[21:21] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[21:21] <= 1'b0;
else if (wire_addr_reg_ena[21:21] == 1'b1) addr_reg[21:21] <= wire_addr_reg_d[21:21];
// synopsys translate_off
initial
addr_reg[22:22] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[22:22] <= 1'b0;
else if (wire_addr_reg_ena[22:22] == 1'b1) addr_reg[22:22] <= wire_addr_reg_d[22:22];
// synopsys translate_off
initial
addr_reg[23:23] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) addr_reg[23:23] <= 1'b0;
else if (wire_addr_reg_ena[23:23] == 1'b1) addr_reg[23:23] <= wire_addr_reg_d[23:23];
assign
wire_addr_reg_d = {((({23{not_busy}} & addr[23:1]) | ({23{stage3_wire}} & addr_reg[22:0])) | ({23{addr_overdie}} & addr_reg_overdie[23:1])), ((not_busy & addr[0]) | (addr_overdie & addr_reg_overdie[0]))};
assign
wire_addr_reg_ena = {24{((((rden_wire | wren_wire) & not_busy) | (stage4_wire & addr_overdie)) | (stage3_wire & ((((do_write | do_sec_erase) | do_die_erase) & do_memadd) | (do_read | do_fast_read))))}};
// synopsys translate_off
initial
asmi_opcode_reg[0:0] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[0:0] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[0:0] == 1'b1) asmi_opcode_reg[0:0] <= wire_asmi_opcode_reg_d[0:0];
// synopsys translate_off
initial
asmi_opcode_reg[1:1] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[1:1] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[1:1] == 1'b1) asmi_opcode_reg[1:1] <= wire_asmi_opcode_reg_d[1:1];
// synopsys translate_off
initial
asmi_opcode_reg[2:2] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[2:2] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[2:2] == 1'b1) asmi_opcode_reg[2:2] <= wire_asmi_opcode_reg_d[2:2];
// synopsys translate_off
initial
asmi_opcode_reg[3:3] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[3:3] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[3:3] == 1'b1) asmi_opcode_reg[3:3] <= wire_asmi_opcode_reg_d[3:3];
// synopsys translate_off
initial
asmi_opcode_reg[4:4] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[4:4] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[4:4] == 1'b1) asmi_opcode_reg[4:4] <= wire_asmi_opcode_reg_d[4:4];
// synopsys translate_off
initial
asmi_opcode_reg[5:5] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[5:5] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[5:5] == 1'b1) asmi_opcode_reg[5:5] <= wire_asmi_opcode_reg_d[5:5];
// synopsys translate_off
initial
asmi_opcode_reg[6:6] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[6:6] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[6:6] == 1'b1) asmi_opcode_reg[6:6] <= wire_asmi_opcode_reg_d[6:6];
// synopsys translate_off
initial
asmi_opcode_reg[7:7] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) asmi_opcode_reg[7:7] <= 1'b0;
else if (wire_asmi_opcode_reg_ena[7:7] == 1'b1) asmi_opcode_reg[7:7] <= wire_asmi_opcode_reg_d[7:7];
assign
wire_asmi_opcode_reg_d = {((((((((((((((((({7{(load_opcode & do_read_sid)}} & rsid_opcode[7:1]) | ({7{(load_opcode & do_read_rdid)}} & rdid_opcode[7:1])) | ({7{(((load_opcode & do_sec_prot) & (~ do_wren)) & (~ do_read_stat))}} & secprot_opcode[7:1])) | ({7{(load_opcode & do_read)}} & read_opcode[7:1])) | ({7{(load_opcode & do_fast_read)}} & fast_read_opcode[7:1])) | ({7{((((load_opcode & do_read_volatile) & (~ do_write_volatile)) & (~ do_wren)) & (~ do_read_stat))}} & rdummyclk_opcode[7:1])) | ({7{((((load_opcode & do_write_volatile) & (~ do_read_volatile)) & (~ do_wren)) & (~ do_read_stat))}} & wrvolatile_opcode[7:1])) | ({7{(load_opcode & do_read_nonvolatile)}} & rnvdummyclk_opcode[7:1])) | ({7{(load_opcode & ((do_write & (~ do_read_stat)) & (~ do_wren)))}} & write_opcode[7:1])) | ({7{((load_opcode & do_read_stat) & (~ do_polling))}} & rstat_opcode[7:1])) | ({7{((load_opcode & do_read_stat) & do_polling)}} & rflagstat_opcode[7:1])) | ({7{(((load_opcode & do_sec_erase) & (~ do_wren)) & (~ do_read_stat))}} & serase_opcode[7:1])) | ({7{(((load_opcode & do_die_erase) & (~ do_wren)) & (~ do_read_stat))}} & derase_opcode[7:1])) | ({7{(((load_opcode & do_bulk_erase) & (~ do_wren)) & (~ do_read_stat))}} & berase_opcode[7:1])) | ({7{(load_opcode & do_wren)}} & wren_opcode[7:1])) | ({7{(load_opcode & ((do_4baddr & (~ do_read_stat)) & (~ do_wren)))}} & b4addr_opcode[7:1])) | ({7{shift_opcode}} & asmi_opcode_reg[6:0])), (((((((((((((((((load_opcode & do_read_sid) & rsid_opcode[0]) | ((load_opcode & do_read_rdid) & rdid_opcode[0])) | ((((load_opcode & do_sec_prot) & (~ do_wren)) & (~ do_read_stat)) & secprot_opcode[0])) | ((load_opcode & do_read) & read_opcode[0])) | ((load_opcode & do_fast_read) & fast_read_opcode[0])) | (((((load_opcode & do_read_volatile) & (~ do_write_volatile)) & (~ do_wren)) & (~ do_read_stat)) & rdummyclk_opcode[0])) | (((((load_opcode & do_write_volatile) & (~ do_read_volatile)) & (~ do_wren)) & (~ do_read_stat)) & wrvolatile_opcode[0])) | ((load_opcode & do_read_nonvolatile) & rnvdummyclk_opcode[0]
)) | ((load_opcode & ((do_write & (~ do_read_stat)) & (~ do_wren))) & write_opcode[0])) | (((load_opcode & do_read_stat) & (~ do_polling)) & rstat_opcode[0])) | (((load_opcode & do_read_stat) & do_polling) & rflagstat_opcode[0])) | ((((load_opcode & do_sec_erase) & (~ do_wren)) & (~ do_read_stat)) & serase_opcode[0])) | ((((load_opcode & do_die_erase) & (~ do_wren)) & (~ do_read_stat)) & derase_opcode[0])) | ((((load_opcode & do_bulk_erase) & (~ do_wren)) & (~ do_read_stat)) & berase_opcode[0])) | ((load_opcode & do_wren) & wren_opcode[0])) | ((load_opcode & ((do_4baddr & (~ do_read_stat)) & (~ do_wren))) & b4addr_opcode[0]))};
assign
wire_asmi_opcode_reg_ena = {8{(load_opcode | shift_opcode)}};
// synopsys translate_off
initial
busy_det_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) busy_det_reg <= 1'b0;
else busy_det_reg <= (~ busy_wire);
// synopsys translate_off
initial
clr_read_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) clr_read_reg <= 1'b0;
else clr_read_reg <= ((do_read_sid | do_sec_prot) | end_operation);
// synopsys translate_off
initial
clr_read_reg2 = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) clr_read_reg2 <= 1'b0;
else clr_read_reg2 <= clr_read_reg;
// synopsys translate_off
initial
dffe3 = 0;
// synopsys translate_on
// synopsys translate_off
initial
dvalid_reg = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) dvalid_reg <= 1'b0;
else if (wire_dvalid_reg_ena == 1'b1)
if (wire_dvalid_reg_sclr == 1'b1) dvalid_reg <= 1'b0;
else dvalid_reg <= (end_read_byte & end_one_cyc_pos);
assign
wire_dvalid_reg_ena = (do_read | do_fast_read),
wire_dvalid_reg_sclr = (end_op_wire | end_operation);
// synopsys translate_off
initial
dvalid_reg2 = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) dvalid_reg2 <= 1'b0;
else dvalid_reg2 <= dvalid_reg;
// synopsys translate_off
initial
end1_cyc_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) end1_cyc_reg <= 1'b0;
else end1_cyc_reg <= end1_cyc_reg_in_wire;
// synopsys translate_off
initial
end1_cyc_reg2 = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) end1_cyc_reg2 <= 1'b0;
else end1_cyc_reg2 <= end_one_cycle;
// synopsys translate_off
initial
end_op_hdlyreg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) end_op_hdlyreg <= 1'b0;
else end_op_hdlyreg <= end_operation;
// synopsys translate_off
initial
end_op_reg = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) end_op_reg <= 1'b0;
else end_op_reg <= end_op_wire;
// synopsys translate_off
initial
end_rbyte_reg = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) end_rbyte_reg <= 1'b0;
else if (wire_end_rbyte_reg_ena == 1'b1)
if (wire_end_rbyte_reg_sclr == 1'b1) end_rbyte_reg <= 1'b0;
else end_rbyte_reg <= (((do_read | do_fast_read) & wire_stage_cntr_q[1]) & (~ wire_stage_cntr_q[0]));
assign
wire_end_rbyte_reg_ena = (((wire_gen_cntr_q[2] & (~ wire_gen_cntr_q[1])) & wire_gen_cntr_q[0]) | clr_endrbyte_wire),
wire_end_rbyte_reg_sclr = (clr_endrbyte_wire | addr_overdie);
// synopsys translate_off
initial
end_read_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) end_read_reg <= 1'b0;
else end_read_reg <= ((((~ rden_wire) & (do_read | do_fast_read)) & data_valid_wire) & end_read_byte);
// synopsys translate_off
initial
ncs_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) ncs_reg <= 1'b0;
else if (wire_ncs_reg_ena == 1'b1)
if (wire_ncs_reg_sclr == 1'b1) ncs_reg <= 1'b0;
else ncs_reg <= 1'b1;
assign
wire_ncs_reg_ena = (((((~ wire_stage_cntr_q[1]) & wire_stage_cntr_q[0]) & end_one_cyc_pos) | addr_overdie_pos) | end_operation),
wire_ncs_reg_sclr = (end_operation | addr_overdie_pos);
// synopsys translate_off
initial
read_data_reg[0:0] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[0:0] <= 1'b0;
else if (wire_read_data_reg_ena[0:0] == 1'b1) read_data_reg[0:0] <= wire_read_data_reg_d[0:0];
// synopsys translate_off
initial
read_data_reg[1:1] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[1:1] <= 1'b0;
else if (wire_read_data_reg_ena[1:1] == 1'b1) read_data_reg[1:1] <= wire_read_data_reg_d[1:1];
// synopsys translate_off
initial
read_data_reg[2:2] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[2:2] <= 1'b0;
else if (wire_read_data_reg_ena[2:2] == 1'b1) read_data_reg[2:2] <= wire_read_data_reg_d[2:2];
// synopsys translate_off
initial
read_data_reg[3:3] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[3:3] <= 1'b0;
else if (wire_read_data_reg_ena[3:3] == 1'b1) read_data_reg[3:3] <= wire_read_data_reg_d[3:3];
// synopsys translate_off
initial
read_data_reg[4:4] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[4:4] <= 1'b0;
else if (wire_read_data_reg_ena[4:4] == 1'b1) read_data_reg[4:4] <= wire_read_data_reg_d[4:4];
// synopsys translate_off
initial
read_data_reg[5:5] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[5:5] <= 1'b0;
else if (wire_read_data_reg_ena[5:5] == 1'b1) read_data_reg[5:5] <= wire_read_data_reg_d[5:5];
// synopsys translate_off
initial
read_data_reg[6:6] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[6:6] <= 1'b0;
else if (wire_read_data_reg_ena[6:6] == 1'b1) read_data_reg[6:6] <= wire_read_data_reg_d[6:6];
// synopsys translate_off
initial
read_data_reg[7:7] = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_data_reg[7:7] <= 1'b0;
else if (wire_read_data_reg_ena[7:7] == 1'b1) read_data_reg[7:7] <= wire_read_data_reg_d[7:7];
assign
wire_read_data_reg_d = {read_data_reg_in_wire[7:0]};
assign
wire_read_data_reg_ena = {8{(((((do_read | do_fast_read) & wire_stage_cntr_q[1]) & (~ wire_stage_cntr_q[0])) & end_one_cyc_pos) & end_read_byte)}};
// synopsys translate_off
initial
read_dout_reg[0:0] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[0:0] <= 1'b0;
else if (wire_read_dout_reg_ena[0:0] == 1'b1) read_dout_reg[0:0] <= wire_read_dout_reg_d[0:0];
// synopsys translate_off
initial
read_dout_reg[1:1] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[1:1] <= 1'b0;
else if (wire_read_dout_reg_ena[1:1] == 1'b1) read_dout_reg[1:1] <= wire_read_dout_reg_d[1:1];
// synopsys translate_off
initial
read_dout_reg[2:2] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[2:2] <= 1'b0;
else if (wire_read_dout_reg_ena[2:2] == 1'b1) read_dout_reg[2:2] <= wire_read_dout_reg_d[2:2];
// synopsys translate_off
initial
read_dout_reg[3:3] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[3:3] <= 1'b0;
else if (wire_read_dout_reg_ena[3:3] == 1'b1) read_dout_reg[3:3] <= wire_read_dout_reg_d[3:3];
// synopsys translate_off
initial
read_dout_reg[4:4] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[4:4] <= 1'b0;
else if (wire_read_dout_reg_ena[4:4] == 1'b1) read_dout_reg[4:4] <= wire_read_dout_reg_d[4:4];
// synopsys translate_off
initial
read_dout_reg[5:5] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[5:5] <= 1'b0;
else if (wire_read_dout_reg_ena[5:5] == 1'b1) read_dout_reg[5:5] <= wire_read_dout_reg_d[5:5];
// synopsys translate_off
initial
read_dout_reg[6:6] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[6:6] <= 1'b0;
else if (wire_read_dout_reg_ena[6:6] == 1'b1) read_dout_reg[6:6] <= wire_read_dout_reg_d[6:6];
// synopsys translate_off
initial
read_dout_reg[7:7] = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) read_dout_reg[7:7] <= 1'b0;
else if (wire_read_dout_reg_ena[7:7] == 1'b1) read_dout_reg[7:7] <= wire_read_dout_reg_d[7:7];
assign
wire_read_dout_reg_d = {read_dout_reg[6:0], (data0out_wire | dataout_wire[1])};
assign
wire_read_dout_reg_ena = {8{((stage4_wire & ((do_read | do_fast_read) | do_read_sid)) | (stage3_wire & (((do_read_stat | do_read_rdid) | do_read_volatile) | do_read_nonvolatile)))}};
// synopsys translate_off
initial
read_reg = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) read_reg <= 1'b0;
else if (wire_read_reg_ena == 1'b1)
if (clr_read_wire == 1'b1) read_reg <= 1'b0;
else read_reg <= read;
assign
wire_read_reg_ena = (((~ busy_wire) & rden_wire) | clr_read_wire);
// synopsys translate_off
initial
shift_op_reg = 0;
// synopsys translate_on
always @ ( posedge clkin_wire or posedge reset)
if (reset == 1'b1) shift_op_reg <= 1'b0;
else shift_op_reg <= ((~ wire_stage_cntr_q[1]) & wire_stage_cntr_q[0]);
// synopsys translate_off
initial
stage2_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) stage2_reg <= 1'b0;
else stage2_reg <= ((~ wire_stage_cntr_q[1]) & wire_stage_cntr_q[0]);
// synopsys translate_off
initial
stage3_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) stage3_reg <= 1'b0;
else stage3_reg <= (wire_stage_cntr_q[1] & wire_stage_cntr_q[0]);
// synopsys translate_off
initial
stage4_reg = 0;
// synopsys translate_on
always @ ( negedge clkin_wire or posedge reset)
if (reset == 1'b1) stage4_reg <= 1'b0;
else stage4_reg <= (wire_stage_cntr_q[1] & (~ wire_stage_cntr_q[0]));
assign wire_mux211_dataout = (do_fast_read === 1'b1) ? end_add_cycle_mux_datab_wire : (wire_addbyte_cntr_q[1] & (~ wire_addbyte_cntr_q[0]));
assign
addr_overdie = 1'b0,
addr_overdie_pos = 1'b0,
addr_reg_overdie = {24{1'b0}},
b4addr_opcode = {8{1'b0}},
berase_opcode = {8{1'b0}},
busy = busy_wire,
busy_wire = (((((((((((((do_read_rdid | do_read_sid) | do_read) | do_fast_read) | do_write) | do_sec_prot) | do_read_stat) | do_sec_erase) | do_bulk_erase) | do_die_erase) | do_4baddr) | do_read_volatile) | do_fread_epcq) | do_read_nonvolatile),
clkin_wire = clkin,
clr_addmsb_wire = (((((wire_stage_cntr_q[1] & (~ wire_stage_cntr_q[0])) & end_add_cycle) & end_one_cyc_pos) | (((~ do_read) & (~ do_fast_read)) & clr_write_wire2)) | ((((do_sec_erase | do_die_erase) & (~ do_wren)) & (~ do_read_stat)) & end_operation)),
clr_endrbyte_wire = (((((do_read | do_fast_read) & (~ wire_gen_cntr_q[2])) & wire_gen_cntr_q[1]) & wire_gen_cntr_q[0]) | clr_read_wire2),
clr_read_wire = clr_read_reg,
clr_read_wire2 = clr_read_reg2,
clr_write_wire2 = 1'b0,
data0out_wire = wire_cyclone_asmiblock2_data0out,
data_valid = data_valid_wire,
data_valid_wire = dvalid_reg2,
datain_wire = {{4{1'b0}}},
dataout = {read_data_reg[7:0]},
dataout_wire = {{4{1'b0}}},
derase_opcode = {8{1'b0}},
do_4baddr = 1'b0,
do_bulk_erase = 1'b0,
do_die_erase = 1'b0,
do_fast_read = 1'b0,
do_fread_epcq = 1'b0,
do_freadwrv_polling = 1'b0,
do_memadd = 1'b0,
do_polling = ((do_write_polling | do_sprot_polling) | do_freadwrv_polling),
do_read = ((((~ read_rdid_wire) & (~ read_sid_wire)) & (~ sec_protect_wire)) & read_wire),
do_read_nonvolatile = 1'b0,
do_read_rdid = 1'b0,
do_read_sid = 1'b0,
do_read_stat = 1'b0,
do_read_volatile = 1'b0,
do_sec_erase = 1'b0,
do_sec_prot = 1'b0,
do_sprot_polling = 1'b0,
do_wait_dummyclk = 1'b0,
do_wren = 1'b0,
do_write = 1'b0,
do_write_polling = 1'b0,
do_write_volatile = 1'b0,
end1_cyc_gen_cntr_wire = ((wire_gen_cntr_q[2] & (~ wire_gen_cntr_q[1])) & (~ wire_gen_cntr_q[0])),
end1_cyc_normal_in_wire = (((((((((((~ wire_stage_cntr_q[0]) & (~ wire_stage_cntr_q[1])) & (~ wire_gen_cntr_q[2])) & wire_gen_cntr_q[1]) & wire_gen_cntr_q[0]) | ((~ ((~ wire_stage_cntr_q[0]) & (~ wire_stage_cntr_q[1]))) & end1_cyc_gen_cntr_wire)) | (do_read & end_read)) | (do_fast_read & end_fast_read)) | ((((do_write | do_sec_erase) | do_bulk_erase) | do_die_erase) & write_prot_true)) | (do_write & (~ pagewr_buf_not_empty[0]))) | ((do_read_stat & start_poll) & (~ st_busy_wire))),
end1_cyc_reg_in_wire = end1_cyc_normal_in_wire,
end_add_cycle = wire_mux211_dataout,
end_add_cycle_mux_datab_wire = (wire_addbyte_cntr_q[2] & wire_addbyte_cntr_q[1]),
end_fast_read = end_read_reg,
end_one_cyc_pos = end1_cyc_reg2,
end_one_cycle = end1_cyc_reg,
end_op_wire = ((((((((((((wire_stage_cntr_q[1] & (~ wire_stage_cntr_q[0])) & ((((((~ do_read) & (~ do_fast_read)) & (~ (do_write & shift_pgwr_data))) & end_one_cycle) | (do_read & end_read)) | (do_fast_read & end_fast_read))) | ((((wire_stage_cntr_q[1] & wire_stage_cntr_q[0]) & do_read_stat) & end_one_cycle) & (~ do_polling))) | ((((((do_read_rdid & end_one_cyc_pos) & wire_stage_cntr_q[1]) & wire_stage_cntr_q[0]) & wire_addbyte_cntr_q[2]) & wire_addbyte_cntr_q[1]) & (~ wire_addbyte_cntr_q[0]))) | (((start_poll & do_read_stat) & do_polling) & (~ st_busy_wire))) | ((((~ wire_stage_cntr_q[1]) & wire_stage_cntr_q[0]) & (do_wren | (do_4baddr | (do_bulk_erase & (~ do_read_stat))))) & end_one_cycle)) | ((((do_write | do_sec_erase) | do_bulk_erase) | do_die_erase) & write_prot_true)) | ((do_write & shift_pgwr_data) & end_pgwr_data)) | (do_write & (~ pagewr_buf_not_empty[0]))) | (((((wire_stage_cntr_q[1] & wire_stage_cntr_q[0]) & do_sec_prot) & (~ do_wren)) & (~ do_read_stat)) & end_one_cycle)) | ((((((wire_stage_cntr_q[1] & wire_stage_cntr_q[0]) & (do_sec_erase | do_die_erase)) & (~ do_wren)) & (~ do_read_stat)) & end_add_cycle) & end_one_cycle)) | (((wire_stage_cntr_q[1] & wire_stage_cntr_q[0]) & end_one_cycle) & ((do_write_volatile | do_read_volatile) | (do_read_nonvolatile & wire_addbyte_cntr_q[1])))),
end_operation = end_op_reg,
end_ophdly = end_op_hdlyreg,
end_pgwr_data = 1'b0,
end_read = end_read_reg,
end_read_byte = (end_rbyte_reg & (~ addr_overdie)),
fast_read_opcode = {8{1'b0}},
freadwrv_sdoin = 1'b0,
in_operation = busy_wire,
load_opcode = (((((~ wire_stage_cntr_q[1]) & (~ wire_stage_cntr_q[0])) & (~ wire_gen_cntr_q[2])) & (~ wire_gen_cntr_q[1])) & wire_gen_cntr_q[0]),
memadd_sdoin = add_msb_reg,
not_busy = busy_det_reg,
oe_wire = 1'b0,
pagewr_buf_not_empty = {1'b1},
rden_wire = rden,
rdid_opcode = {8{1'b0}},
rdummyclk_opcode = {8{1'b0}},
read_data_reg_in_wire = {read_dout_reg[7:0]},
read_opcode = 8'b00000011,
read_rdid_wire = 1'b0,
read_sid_wire = 1'b0,
read_wire = read_reg,
rflagstat_opcode = {8{1'b0}},
rnvdummyclk_opcode = {8{1'b0}},
rsid_opcode = {8{1'b0}},
rsid_sdoin = 1'b0,
rstat_opcode = {8{1'b0}},
scein_wire = (~ ncs_reg),
sdoin_wire = to_sdoin_wire,
sec_protect_wire = 1'b0,
secprot_opcode = {8{1'b0}},
secprot_sdoin = 1'b0,
serase_opcode = {8{1'b0}},
shift_opcode = shift_op_reg,
shift_opdata = stage2_wire,
shift_pgwr_data = 1'b0,
st_busy_wire = 1'b0,
stage2_wire = stage2_reg,
stage3_wire = stage3_reg,
stage4_wire = stage4_reg,
start_frpoll = 1'b0,
start_poll = ((start_wrpoll | start_sppoll) | start_frpoll),
start_sppoll = 1'b0,
start_wrpoll = 1'b0,
to_sdoin_wire = ((((((shift_opdata & asmi_opcode_reg[7]) | rsid_sdoin) | memadd_sdoin) | write_sdoin) | secprot_sdoin) | freadwrv_sdoin),
wren_opcode = {8{1'b0}},
wren_wire = 1'b1,
write_opcode = {8{1'b0}},
write_prot_true = 1'b0,
write_sdoin = 1'b0,
wrvolatile_opcode = {8{1'b0}};
endmodule //asmi_altasmi_parallel_gqd2
//VALID FILE
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module asmi (
addr,
clkin,
rden,
read,
reset,
busy,
data_valid,
dataout)/* synthesis synthesis_clearbox = 2 */;
input [23:0] addr;
input clkin;
input rden;
input read;
input reset;
output busy;
output data_valid;
output [7:0] dataout;
wire [7:0] sub_wire0;
wire sub_wire1;
wire sub_wire2;
wire [7:0] dataout = sub_wire0[7:0];
wire busy = sub_wire1;
wire data_valid = sub_wire2;
asmi_altasmi_parallel_gqd2 asmi_altasmi_parallel_gqd2_component (
.read (read),
.addr (addr),
.clkin (clkin),
.rden (rden),
.reset (reset),
.dataout (sub_wire0),
.busy (sub_wire1),
.data_valid (sub_wire2))/* synthesis synthesis_clearbox=2
clearbox_macroname = ALTASMI_PARALLEL
clearbox_defparam = "data_width=STANDARD;epcs_type=EPCS4;intended_device_family=Cyclone;lpm_hint=UNUSED;lpm_type=altasmi_parallel;page_size=1;port_bulk_erase=PORT_UNUSED;port_die_erase=PORT_UNUSED;port_en4b_addr=PORT_UNUSED;port_fast_read=PORT_UNUSED;port_illegal_erase=PORT_UNUSED;port_illegal_write=PORT_UNUSED;port_rdid_out=PORT_UNUSED;port_read_address=PORT_UNUSED;port_read_dummyclk=PORT_UNUSED;port_read_rdid=PORT_UNUSED;port_read_sid=PORT_UNUSED;port_read_status=PORT_UNUSED;port_sector_erase=PORT_UNUSED;port_sector_protect=PORT_UNUSED;port_shift_bytes=PORT_UNUSED;port_wren=PORT_UNUSED;port_write=PORT_UNUSED;use_asmiblock=ON;use_eab=ON;write_dummy_clk=0;" */;
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: DATA_WIDTH STRING "STANDARD"
// Retrieval info: CONSTANT: EPCS_TYPE STRING "EPCS4"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altasmi_parallel"
// Retrieval info: CONSTANT: PAGE_SIZE NUMERIC "1"
// Retrieval info: CONSTANT: PORT_BULK_ERASE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_DIE_ERASE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_EN4B_ADDR STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_FAST_READ STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_ILLEGAL_ERASE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_ILLEGAL_WRITE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_RDID_OUT STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_READ_ADDRESS STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_READ_DUMMYCLK STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_READ_RDID STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_READ_SID STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_READ_STATUS STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SECTOR_ERASE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SECTOR_PROTECT STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SHIFT_BYTES STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_WREN STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_WRITE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: USE_ASMIBLOCK STRING "ON"
// Retrieval info: CONSTANT: USE_EAB STRING "ON"
// Retrieval info: CONSTANT: WRITE_DUMMY_CLK NUMERIC "0"
// Retrieval info: USED_PORT: addr 0 0 24 0 INPUT NODEFVAL "addr[23..0]"
// Retrieval info: CONNECT: @addr 0 0 24 0 addr 0 0 24 0
// Retrieval info: USED_PORT: busy 0 0 0 0 OUTPUT NODEFVAL "busy"
// Retrieval info: CONNECT: busy 0 0 0 0 @busy 0 0 0 0
// Retrieval info: USED_PORT: clkin 0 0 0 0 INPUT NODEFVAL "clkin"
// Retrieval info: CONNECT: @clkin 0 0 0 0 clkin 0 0 0 0
// Retrieval info: USED_PORT: data_valid 0 0 0 0 OUTPUT NODEFVAL "data_valid"
// Retrieval info: CONNECT: data_valid 0 0 0 0 @data_valid 0 0 0 0
// Retrieval info: USED_PORT: dataout 0 0 8 0 OUTPUT NODEFVAL "dataout[7..0]"
// Retrieval info: CONNECT: dataout 0 0 8 0 @dataout 0 0 8 0
// Retrieval info: USED_PORT: rden 0 0 0 0 INPUT NODEFVAL "rden"
// Retrieval info: CONNECT: @rden 0 0 0 0 rden 0 0 0 0
// Retrieval info: USED_PORT: read 0 0 0 0 INPUT NODEFVAL "read"
// Retrieval info: CONNECT: @read 0 0 0 0 read 0 0 0 0
// Retrieval info: USED_PORT: reset 0 0 0 0 INPUT NODEFVAL "reset"
// Retrieval info: CONNECT: @reset 0 0 0 0 reset 0 0 0 0
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi.v TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi.qip TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi.bsf FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi_inst.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi_bb.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi.inc FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL asmi.cmp FALSE TRUE

11
fpga/syn/ip/pll.ppf Executable file
View File

@ -0,0 +1,11 @@
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE pinplan>
<pinplan intended_family="Cyclone" variation_name="pll" megafunction_name="ALTPLL" specifies="all_ports">
<global>
<pin name="inclk0" direction="input" scope="external" source="clock" />
<pin name="c0" direction="output" scope="external" source="clock" />
<pin name="c1" direction="output" scope="external" source="clock" />
<pin name="locked" direction="output" scope="external" />
</global>
</pinplan>

4
fpga/syn/ip/pll.qip Executable file
View File

@ -0,0 +1,4 @@
set_global_assignment -name IP_TOOL_NAME "ALTPLL"
set_global_assignment -name IP_TOOL_VERSION "13.0"
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) "pll.v"]
set_global_assignment -name MISC_FILE [file join $::quartus(qip_path) "pll.ppf"]

335
fpga/syn/ip/pll.v Executable file
View File

@ -0,0 +1,335 @@
// megafunction wizard: %ALTPLL%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altpll
// ============================================================
// File Name: pll.v
// Megafunction Name(s):
// altpll
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 13.0.1 Build 232 06/12/2013 SP 1 SJ Full Version
// ************************************************************
//Copyright (C) 1991-2013 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module pll (
inclk0,
c0,
c1,
locked);
input inclk0;
output c0;
output c1;
output locked;
wire [5:0] sub_wire0;
wire sub_wire2;
wire [0:0] sub_wire6 = 1'h0;
wire [0:0] sub_wire3 = sub_wire0[0:0];
wire [1:1] sub_wire1 = sub_wire0[1:1];
wire c1 = sub_wire1;
wire locked = sub_wire2;
wire c0 = sub_wire3;
wire sub_wire4 = inclk0;
wire [1:0] sub_wire5 = {sub_wire6, sub_wire4};
altpll altpll_component (
.inclk (sub_wire5),
.clk (sub_wire0),
.locked (sub_wire2),
.activeclock (),
.areset (1'b0),
.clkbad (),
.clkena ({6{1'b1}}),
.clkloss (),
.clkswitch (1'b0),
.configupdate (1'b0),
.enable0 (),
.enable1 (),
.extclk (),
.extclkena ({4{1'b1}}),
.fbin (1'b1),
.fbmimicbidir (),
.fbout (),
.fref (),
.icdrclk (),
.pfdena (1'b1),
.phasecounterselect ({4{1'b1}}),
.phasedone (),
.phasestep (1'b1),
.phaseupdown (1'b1),
.pllena (1'b1),
.scanaclr (1'b0),
.scanclk (1'b0),
.scanclkena (1'b1),
.scandata (1'b0),
.scandataout (),
.scandone (),
.scanread (1'b0),
.scanwrite (1'b0),
.sclkout0 (),
.sclkout1 (),
.vcooverrange (),
.vcounderrange ());
defparam
altpll_component.clk0_divide_by = 7,
altpll_component.clk0_duty_cycle = 50,
altpll_component.clk0_multiply_by = 10,
altpll_component.clk0_phase_shift = "0",
altpll_component.clk1_divide_by = 7,
altpll_component.clk1_duty_cycle = 50,
altpll_component.clk1_multiply_by = 5,
altpll_component.clk1_phase_shift = "0",
altpll_component.compensate_clock = "CLK0",
altpll_component.inclk0_input_frequency = 35714,
altpll_component.intended_device_family = "Cyclone",
altpll_component.invalid_lock_multiplier = 5,
altpll_component.lpm_hint = "CBX_MODULE_PREFIX=pll",
altpll_component.lpm_type = "altpll",
altpll_component.operation_mode = "NORMAL",
altpll_component.pll_type = "AUTO",
altpll_component.port_activeclock = "PORT_UNUSED",
altpll_component.port_areset = "PORT_UNUSED",
altpll_component.port_clkbad0 = "PORT_UNUSED",
altpll_component.port_clkbad1 = "PORT_UNUSED",
altpll_component.port_clkloss = "PORT_UNUSED",
altpll_component.port_clkswitch = "PORT_UNUSED",
altpll_component.port_configupdate = "PORT_UNUSED",
altpll_component.port_fbin = "PORT_UNUSED",
altpll_component.port_inclk0 = "PORT_USED",
altpll_component.port_inclk1 = "PORT_UNUSED",
altpll_component.port_locked = "PORT_USED",
altpll_component.port_pfdena = "PORT_UNUSED",
altpll_component.port_phasecounterselect = "PORT_UNUSED",
altpll_component.port_phasedone = "PORT_UNUSED",
altpll_component.port_phasestep = "PORT_UNUSED",
altpll_component.port_phaseupdown = "PORT_UNUSED",
altpll_component.port_pllena = "PORT_UNUSED",
altpll_component.port_scanaclr = "PORT_UNUSED",
altpll_component.port_scanclk = "PORT_UNUSED",
altpll_component.port_scanclkena = "PORT_UNUSED",
altpll_component.port_scandata = "PORT_UNUSED",
altpll_component.port_scandataout = "PORT_UNUSED",
altpll_component.port_scandone = "PORT_UNUSED",
altpll_component.port_scanread = "PORT_UNUSED",
altpll_component.port_scanwrite = "PORT_UNUSED",
altpll_component.port_clk0 = "PORT_USED",
altpll_component.port_clk1 = "PORT_USED",
altpll_component.port_clk3 = "PORT_UNUSED",
altpll_component.port_clk4 = "PORT_UNUSED",
altpll_component.port_clk5 = "PORT_UNUSED",
altpll_component.port_clkena0 = "PORT_UNUSED",
altpll_component.port_clkena1 = "PORT_UNUSED",
altpll_component.port_clkena3 = "PORT_UNUSED",
altpll_component.port_clkena4 = "PORT_UNUSED",
altpll_component.port_clkena5 = "PORT_UNUSED",
altpll_component.port_extclk0 = "PORT_UNUSED",
altpll_component.port_extclk1 = "PORT_UNUSED",
altpll_component.port_extclk2 = "PORT_UNUSED",
altpll_component.port_extclk3 = "PORT_UNUSED",
altpll_component.valid_lock_multiplier = 1;
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: ACTIVECLK_CHECK STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH STRING "1.000"
// Retrieval info: PRIVATE: BANDWIDTH_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH_FREQ_UNIT STRING "MHz"
// Retrieval info: PRIVATE: BANDWIDTH_PRESET STRING "Low"
// Retrieval info: PRIVATE: BANDWIDTH_USE_AUTO STRING "1"
// Retrieval info: PRIVATE: BANDWIDTH_USE_CUSTOM STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH_USE_PRESET STRING "0"
// Retrieval info: PRIVATE: CLKBAD_SWITCHOVER_CHECK STRING "0"
// Retrieval info: PRIVATE: CLKLOSS_CHECK STRING "0"
// Retrieval info: PRIVATE: CLKSWITCH_CHECK STRING "0"
// Retrieval info: PRIVATE: CNX_NO_COMPENSATE_RADIO STRING "0"
// Retrieval info: PRIVATE: CREATE_CLKBAD_CHECK STRING "0"
// Retrieval info: PRIVATE: CREATE_INCLK1_CHECK STRING "0"
// Retrieval info: PRIVATE: CUR_DEDICATED_CLK STRING "c0"
// Retrieval info: PRIVATE: CUR_FBIN_CLK STRING "e0"
// Retrieval info: PRIVATE: DEVICE_FAMILY NUMERIC "11"
// Retrieval info: PRIVATE: DEVICE_SPEED_GRADE STRING "8"
// Retrieval info: PRIVATE: DIV_FACTOR0 NUMERIC "4"
// Retrieval info: PRIVATE: DIV_FACTOR1 NUMERIC "1"
// Retrieval info: PRIVATE: DUTY_CYCLE0 STRING "50.00000000"
// Retrieval info: PRIVATE: DUTY_CYCLE1 STRING "50.00000000"
// Retrieval info: PRIVATE: EFF_OUTPUT_FREQ_VALUE0 STRING "40.000000"
// Retrieval info: PRIVATE: EFF_OUTPUT_FREQ_VALUE1 STRING "20.000000"
// Retrieval info: PRIVATE: EXPLICIT_SWITCHOVER_COUNTER STRING "0"
// Retrieval info: PRIVATE: EXT_FEEDBACK_RADIO STRING "0"
// Retrieval info: PRIVATE: GLOCKED_COUNTER_EDIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: GLOCKED_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: GLOCKED_MODE_CHECK STRING "0"
// Retrieval info: PRIVATE: GLOCK_COUNTER_EDIT NUMERIC "1048575"
// Retrieval info: PRIVATE: HAS_MANUAL_SWITCHOVER STRING "1"
// Retrieval info: PRIVATE: INCLK0_FREQ_EDIT STRING "28.000"
// Retrieval info: PRIVATE: INCLK0_FREQ_UNIT_COMBO STRING "MHz"
// Retrieval info: PRIVATE: INCLK1_FREQ_EDIT STRING "100.000"
// Retrieval info: PRIVATE: INCLK1_FREQ_EDIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: INCLK1_FREQ_UNIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: INCLK1_FREQ_UNIT_COMBO STRING "MHz"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: PRIVATE: INT_FEEDBACK__MODE_RADIO STRING "1"
// Retrieval info: PRIVATE: LOCKED_OUTPUT_CHECK STRING "1"
// Retrieval info: PRIVATE: LOCK_LOSS_SWITCHOVER_CHECK STRING "0"
// Retrieval info: PRIVATE: LONG_SCAN_RADIO STRING "1"
// Retrieval info: PRIVATE: LVDS_MODE_DATA_RATE STRING "Not Available"
// Retrieval info: PRIVATE: LVDS_MODE_DATA_RATE_DIRTY NUMERIC "0"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT0 STRING "deg"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT1 STRING "ps"
// Retrieval info: PRIVATE: MIG_DEVICE_SPEED_GRADE STRING "Any"
// Retrieval info: PRIVATE: MIRROR_CLK0 STRING "0"
// Retrieval info: PRIVATE: MIRROR_CLK1 STRING "0"
// Retrieval info: PRIVATE: MULT_FACTOR0 NUMERIC "2"
// Retrieval info: PRIVATE: MULT_FACTOR1 NUMERIC "1"
// Retrieval info: PRIVATE: NORMAL_MODE_RADIO STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ0 STRING "40.00000000"
// Retrieval info: PRIVATE: OUTPUT_FREQ1 STRING "20.00000000"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE0 STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE1 STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT0 STRING "MHz"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT1 STRING "MHz"
// Retrieval info: PRIVATE: PHASE_RECONFIG_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: PHASE_RECONFIG_INPUTS_CHECK STRING "0"
// Retrieval info: PRIVATE: PHASE_SHIFT0 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT1 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT_STEP_ENABLED_CHECK STRING "0"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT0 STRING "deg"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT1 STRING "ps"
// Retrieval info: PRIVATE: PLL_ADVANCED_PARAM_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_ARESET_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_AUTOPLL_CHECK NUMERIC "1"
// Retrieval info: PRIVATE: PLL_ENA_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_ENHPLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_FASTPLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_FBMIMIC_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_LVDS_PLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_PFDENA_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_TARGET_HARCOPY_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PRIMARY_CLK_COMBO STRING "inclk0"
// Retrieval info: PRIVATE: SACN_INPUTS_CHECK STRING "0"
// Retrieval info: PRIVATE: SCAN_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: SELF_RESET_LOCK_LOSS STRING "0"
// Retrieval info: PRIVATE: SHORT_SCAN_RADIO STRING "0"
// Retrieval info: PRIVATE: SPREAD_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: SPREAD_FREQ STRING "50.000"
// Retrieval info: PRIVATE: SPREAD_FREQ_UNIT STRING "KHz"
// Retrieval info: PRIVATE: SPREAD_PERCENT STRING "0.500"
// Retrieval info: PRIVATE: SPREAD_USE STRING "0"
// Retrieval info: PRIVATE: SRC_SYNCH_COMP_RADIO STRING "0"
// Retrieval info: PRIVATE: STICKY_CLK0 STRING "1"
// Retrieval info: PRIVATE: STICKY_CLK1 STRING "1"
// Retrieval info: PRIVATE: SWITCHOVER_COUNT_EDIT NUMERIC "1"
// Retrieval info: PRIVATE: SWITCHOVER_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: USE_CLK0 STRING "1"
// Retrieval info: PRIVATE: USE_CLK1 STRING "1"
// Retrieval info: PRIVATE: USE_CLKENA0 STRING "0"
// Retrieval info: PRIVATE: USE_CLKENA1 STRING "0"
// Retrieval info: PRIVATE: USE_MIL_SPEED_GRADE NUMERIC "0"
// Retrieval info: PRIVATE: ZERO_DELAY_RADIO STRING "0"
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: CONSTANT: CLK0_DIVIDE_BY NUMERIC "7"
// Retrieval info: CONSTANT: CLK0_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK0_MULTIPLY_BY NUMERIC "10"
// Retrieval info: CONSTANT: CLK0_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: CLK1_DIVIDE_BY NUMERIC "7"
// Retrieval info: CONSTANT: CLK1_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK1_MULTIPLY_BY NUMERIC "5"
// Retrieval info: CONSTANT: CLK1_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: COMPENSATE_CLOCK STRING "CLK0"
// Retrieval info: CONSTANT: INCLK0_INPUT_FREQUENCY NUMERIC "35714"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: INVALID_LOCK_MULTIPLIER NUMERIC "5"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altpll"
// Retrieval info: CONSTANT: OPERATION_MODE STRING "NORMAL"
// Retrieval info: CONSTANT: PLL_TYPE STRING "AUTO"
// Retrieval info: CONSTANT: PORT_ACTIVECLOCK STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_ARESET STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKBAD0 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKBAD1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKLOSS STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKSWITCH STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CONFIGUPDATE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_FBIN STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_INCLK0 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_INCLK1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_LOCKED STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_PFDENA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASECOUNTERSELECT STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASEDONE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASESTEP STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASEUPDOWN STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PLLENA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANACLR STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANCLK STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANCLKENA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANDATA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANDATAOUT STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANDONE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANREAD STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANWRITE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clk0 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_clk1 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_clk3 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clk4 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clk5 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena0 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena3 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena4 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena5 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk0 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk2 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk3 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: VALID_LOCK_MULTIPLIER NUMERIC "1"
// Retrieval info: USED_PORT: @clk 0 0 6 0 OUTPUT_CLK_EXT VCC "@clk[5..0]"
// Retrieval info: USED_PORT: @extclk 0 0 4 0 OUTPUT_CLK_EXT VCC "@extclk[3..0]"
// Retrieval info: USED_PORT: c0 0 0 0 0 OUTPUT_CLK_EXT VCC "c0"
// Retrieval info: USED_PORT: c1 0 0 0 0 OUTPUT_CLK_EXT VCC "c1"
// Retrieval info: USED_PORT: inclk0 0 0 0 0 INPUT_CLK_EXT GND "inclk0"
// Retrieval info: USED_PORT: locked 0 0 0 0 OUTPUT GND "locked"
// Retrieval info: CONNECT: @inclk 0 0 1 1 GND 0 0 0 0
// Retrieval info: CONNECT: @inclk 0 0 1 0 inclk0 0 0 0 0
// Retrieval info: CONNECT: c0 0 0 0 0 @clk 0 0 1 0
// Retrieval info: CONNECT: c1 0 0 0 0 @clk 0 0 1 1
// Retrieval info: CONNECT: locked 0 0 0 0 @locked 0 0 0 0
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.ppf TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll_bb.v FALSE
// Retrieval info: LIB_FILE: altera_mf
// Retrieval info: CBX_MODULE_PREFIX: ON

3
fpga/syn/ip/rom2ram.qip Executable file
View File

@ -0,0 +1,3 @@
set_global_assignment -name IP_TOOL_NAME "RAM initializer"
set_global_assignment -name IP_TOOL_VERSION "13.0"
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) "rom2ram.v"]

518
fpga/syn/ip/rom2ram.v Executable file
View File

@ -0,0 +1,518 @@
// megafunction wizard: %RAM initializer%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: ALTMEM_INIT
// ============================================================
// File Name: rom2ram.v
// Megafunction Name(s):
// ALTMEM_INIT
//
// Simulation Library Files(s):
// lpm
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 13.0.1 Build 232 06/12/2013 SP 1 SJ Full Version
// ************************************************************
//Copyright (C) 1991-2013 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
//altmem_init CBX_AUTO_BLACKBOX="ALL" DEVICE_FAMILY="Cyclone" INIT_TO_ZERO="NO" NUMWORDS=32768 PORT_ROM_DATA_READY="PORT_USED" ROM_READ_LATENCY=1 WIDTH=8 WIDTHAD=15 clock datain dataout init init_busy ram_address ram_wren rom_address rom_data_ready rom_rden
//VERSION_BEGIN 13.0 cbx_altmem_init 2013:06:12:18:03:33:SJ cbx_altsyncram 2013:06:12:18:03:33:SJ cbx_cycloneii 2013:06:12:18:03:33:SJ cbx_lpm_add_sub 2013:06:12:18:03:33:SJ cbx_lpm_compare 2013:06:12:18:03:33:SJ cbx_lpm_counter 2013:06:12:18:03:33:SJ cbx_lpm_decode 2013:06:12:18:03:33:SJ cbx_lpm_mux 2013:06:12:18:03:33:SJ cbx_mgl 2013:06:12:18:33:59:SJ cbx_stratix 2013:06:12:18:03:33:SJ cbx_stratixii 2013:06:12:18:03:33:SJ cbx_stratixiii 2013:06:12:18:03:33:SJ cbx_stratixv 2013:06:12:18:03:33:SJ cbx_util_mgl 2013:06:12:18:03:33:SJ VERSION_END
// synthesis VERILOG_INPUT_VERSION VERILOG_2001
// altera message_off 10463
//synthesis_resources = lpm_compare 2 lpm_counter 2 lut 30
//synopsys translate_off
`timescale 1 ps / 1 ps
//synopsys translate_on
module rom2ram_meminit_kqn
(
clock,
datain,
dataout,
init,
init_busy,
ram_address,
ram_wren,
rom_address,
rom_data_ready,
rom_rden) ;
input clock;
input [7:0] datain;
output [7:0] dataout;
input init;
output init_busy;
output [14:0] ram_address;
output ram_wren;
output [14:0] rom_address;
input rom_data_ready;
output rom_rden;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri0 [7:0] datain;
tri0 rom_data_ready;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
reg [0:0] capture_init;
reg [14:0] delay_addr;
wire [14:0] wire_delay_addr_ena;
reg [7:0] delay_data;
wire [7:0] wire_delay_data_ena;
reg [2:0] prev_state;
wire [2:0] wire_state_reg_d;
reg [2:0] state_reg;
wire [2:0] wire_state_reg_sclr;
wire [2:0] wire_state_reg_sload;
wire wire_addr_cmpr_aeb;
wire wire_addr_cmpr_alb;
wire wire_wait_cmpr_aeb;
wire wire_wait_cmpr_alb;
wire [14:0] wire_addr_ctr_q;
wire [0:0] wire_wait_ctr_q;
wire [0:0] addrct_eq_numwords;
wire [0:0] addrct_lt_numwords;
wire clken;
wire [7:0] dataout_w;
wire [0:0] done_state;
wire [0:0] idle_state;
wire [0:0] ram_write_state;
wire [0:0] reset_state_machine;
wire [0:0] rom_addr_state;
wire [0:0] rom_data_capture_state;
wire [0:0] state_machine_clken;
// synopsys translate_off
initial
capture_init = 0;
// synopsys translate_on
always @ ( posedge clock)
if (clken == 1'b1) capture_init <= ((init | capture_init) & (~ done_state));
// synopsys translate_off
initial
delay_addr[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[0:0] == 1'b1) delay_addr[0:0] <= wire_addr_ctr_q[0:0];
// synopsys translate_off
initial
delay_addr[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[1:1] == 1'b1) delay_addr[1:1] <= wire_addr_ctr_q[1:1];
// synopsys translate_off
initial
delay_addr[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[2:2] == 1'b1) delay_addr[2:2] <= wire_addr_ctr_q[2:2];
// synopsys translate_off
initial
delay_addr[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[3:3] == 1'b1) delay_addr[3:3] <= wire_addr_ctr_q[3:3];
// synopsys translate_off
initial
delay_addr[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[4:4] == 1'b1) delay_addr[4:4] <= wire_addr_ctr_q[4:4];
// synopsys translate_off
initial
delay_addr[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[5:5] == 1'b1) delay_addr[5:5] <= wire_addr_ctr_q[5:5];
// synopsys translate_off
initial
delay_addr[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[6:6] == 1'b1) delay_addr[6:6] <= wire_addr_ctr_q[6:6];
// synopsys translate_off
initial
delay_addr[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[7:7] == 1'b1) delay_addr[7:7] <= wire_addr_ctr_q[7:7];
// synopsys translate_off
initial
delay_addr[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[8:8] == 1'b1) delay_addr[8:8] <= wire_addr_ctr_q[8:8];
// synopsys translate_off
initial
delay_addr[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[9:9] == 1'b1) delay_addr[9:9] <= wire_addr_ctr_q[9:9];
// synopsys translate_off
initial
delay_addr[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[10:10] == 1'b1) delay_addr[10:10] <= wire_addr_ctr_q[10:10];
// synopsys translate_off
initial
delay_addr[11:11] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[11:11] == 1'b1) delay_addr[11:11] <= wire_addr_ctr_q[11:11];
// synopsys translate_off
initial
delay_addr[12:12] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[12:12] == 1'b1) delay_addr[12:12] <= wire_addr_ctr_q[12:12];
// synopsys translate_off
initial
delay_addr[13:13] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[13:13] == 1'b1) delay_addr[13:13] <= wire_addr_ctr_q[13:13];
// synopsys translate_off
initial
delay_addr[14:14] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_addr_ena[14:14] == 1'b1) delay_addr[14:14] <= wire_addr_ctr_q[14:14];
assign
wire_delay_addr_ena = {15{(clken & rom_data_capture_state)}};
// synopsys translate_off
initial
delay_data[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[0:0] == 1'b1) delay_data[0:0] <= datain[0:0];
// synopsys translate_off
initial
delay_data[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[1:1] == 1'b1) delay_data[1:1] <= datain[1:1];
// synopsys translate_off
initial
delay_data[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[2:2] == 1'b1) delay_data[2:2] <= datain[2:2];
// synopsys translate_off
initial
delay_data[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[3:3] == 1'b1) delay_data[3:3] <= datain[3:3];
// synopsys translate_off
initial
delay_data[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[4:4] == 1'b1) delay_data[4:4] <= datain[4:4];
// synopsys translate_off
initial
delay_data[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[5:5] == 1'b1) delay_data[5:5] <= datain[5:5];
// synopsys translate_off
initial
delay_data[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[6:6] == 1'b1) delay_data[6:6] <= datain[6:6];
// synopsys translate_off
initial
delay_data[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (wire_delay_data_ena[7:7] == 1'b1) delay_data[7:7] <= datain[7:7];
assign
wire_delay_data_ena = {8{(clken & rom_data_capture_state)}};
// synopsys translate_off
initial
prev_state = 0;
// synopsys translate_on
always @ ( posedge clock)
if (clken == 1'b1) prev_state <= state_reg;
// synopsys translate_off
initial
state_reg[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (state_machine_clken == 1'b1)
if (wire_state_reg_sclr[0:0] == 1'b1) state_reg[0:0] <= 1'b0;
else if (wire_state_reg_sload[0:0] == 1'b1) state_reg[0:0] <= 1;
else state_reg[0:0] <= wire_state_reg_d[0:0];
// synopsys translate_off
initial
state_reg[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (state_machine_clken == 1'b1)
if (wire_state_reg_sclr[1:1] == 1'b1) state_reg[1:1] <= 1'b0;
else if (wire_state_reg_sload[1:1] == 1'b1) state_reg[1:1] <= 1;
else state_reg[1:1] <= wire_state_reg_d[1:1];
// synopsys translate_off
initial
state_reg[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock)
if (state_machine_clken == 1'b1)
if (wire_state_reg_sclr[2:2] == 1'b1) state_reg[2:2] <= 1'b0;
else if (wire_state_reg_sload[2:2] == 1'b1) state_reg[2:2] <= 1;
else state_reg[2:2] <= wire_state_reg_d[2:2];
assign
wire_state_reg_d = {(((~ state_reg[2]) & state_reg[1]) & state_reg[0]), ((~ state_reg[2]) & (state_reg[1] ^ state_reg[0])), ((~ state_reg[2]) & (~ state_reg[0]))};
assign
wire_state_reg_sclr = {{2{reset_state_machine}}, 1'b0},
wire_state_reg_sload = {{2{1'b0}}, reset_state_machine};
lpm_compare addr_cmpr
(
.aeb(wire_addr_cmpr_aeb),
.agb(),
.ageb(),
.alb(wire_addr_cmpr_alb),
.aleb(),
.aneb(),
.dataa(delay_addr),
.datab({15{1'b1}})
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.clken(1'b1),
.clock(1'b0)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
addr_cmpr.lpm_width = 15,
addr_cmpr.lpm_type = "lpm_compare";
lpm_compare wait_cmpr
(
.aeb(wire_wait_cmpr_aeb),
.agb(),
.ageb(),
.alb(wire_wait_cmpr_alb),
.aleb(),
.aneb(),
.dataa(wire_wait_ctr_q),
.datab(1'b0)
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.clken(1'b1),
.clock(1'b0)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
wait_cmpr.lpm_width = 1,
wait_cmpr.lpm_type = "lpm_compare";
lpm_counter addr_ctr
(
.clk_en(clken),
.clock(clock),
.cnt_en(ram_write_state),
.cout(),
.eq(),
.q(wire_addr_ctr_q),
.sclr(((~ state_reg[1]) & (~ state_reg[0])))
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.aset(1'b0),
.cin(1'b1),
.data({15{1'b0}}),
.sload(1'b0),
.sset(1'b0),
.updown(1'b1)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
addr_ctr.lpm_direction = "UP",
addr_ctr.lpm_modulus = 32768,
addr_ctr.lpm_port_updown = "PORT_UNUSED",
addr_ctr.lpm_width = 15,
addr_ctr.lpm_type = "lpm_counter";
lpm_counter wait_ctr
(
.clk_en(clken),
.clock(clock),
.cnt_en(rom_addr_state),
.cout(),
.eq(),
.q(wire_wait_ctr_q),
.sclr((~ rom_addr_state))
`ifndef FORMAL_VERIFICATION
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.aset(1'b0),
.cin(1'b1),
.data({1{1'b0}}),
.sload(1'b0),
.sset(1'b0),
.updown(1'b1)
`ifndef FORMAL_VERIFICATION
// synopsys translate_on
`endif
);
defparam
wait_ctr.lpm_direction = "UP",
wait_ctr.lpm_modulus = 1,
wait_ctr.lpm_port_updown = "PORT_UNUSED",
wait_ctr.lpm_width = 1,
wait_ctr.lpm_type = "lpm_counter";
assign
addrct_eq_numwords = wire_addr_cmpr_aeb,
addrct_lt_numwords = wire_addr_cmpr_alb,
clken = 1'b1,
dataout = dataout_w,
dataout_w = delay_data,
done_state = ((state_reg[2] & (~ state_reg[1])) & (~ state_reg[0])),
idle_state = (((~ state_reg[2]) & (~ state_reg[1])) & (~ state_reg[0])),
init_busy = capture_init,
ram_address = delay_addr,
ram_wren = ram_write_state,
ram_write_state = (((~ state_reg[2]) & state_reg[1]) & state_reg[0]),
reset_state_machine = (ram_write_state & addrct_lt_numwords),
rom_addr_state = (((~ state_reg[2]) & (~ state_reg[1])) & state_reg[0]),
rom_address = wire_addr_ctr_q,
rom_data_capture_state = (((~ state_reg[2]) & state_reg[1]) & (~ state_reg[0])),
rom_rden = (((~ prev_state[2]) & (((~ prev_state[1]) & (~ prev_state[0])) | (prev_state[1] & prev_state[0]))) & (((~ state_reg[2]) & (~ state_reg[1])) & state_reg[0])),
state_machine_clken = (clken & ((idle_state & capture_init) | ((rom_data_capture_state | done_state) | (capture_init & (((~ (rom_addr_state & (~ rom_data_ready))) | (rom_addr_state & rom_data_ready)) | (ram_write_state & addrct_eq_numwords))))));
endmodule //rom2ram_meminit_kqn
//VALID FILE
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module rom2ram (
clock,
datain,
init,
rom_data_ready,
dataout,
init_busy,
ram_address,
ram_wren,
rom_address,
rom_rden);
input clock;
input [7:0] datain;
input init;
input rom_data_ready;
output [7:0] dataout;
output init_busy;
output [14:0] ram_address;
output ram_wren;
output [14:0] rom_address;
output rom_rden;
wire [14:0] sub_wire0;
wire sub_wire1;
wire [14:0] sub_wire2;
wire [7:0] sub_wire3;
wire sub_wire4;
wire sub_wire5;
wire [14:0] ram_address = sub_wire0[14:0];
wire ram_wren = sub_wire1;
wire [14:0] rom_address = sub_wire2[14:0];
wire [7:0] dataout = sub_wire3[7:0];
wire init_busy = sub_wire4;
wire rom_rden = sub_wire5;
rom2ram_meminit_kqn rom2ram_meminit_kqn_component (
.clock (clock),
.init (init),
.datain (datain),
.rom_data_ready (rom_data_ready),
.ram_address (sub_wire0),
.ram_wren (sub_wire1),
.rom_address (sub_wire2),
.dataout (sub_wire3),
.init_busy (sub_wire4),
.rom_rden (sub_wire5));
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: INIT_FILE STRING "UNUSED"
// Retrieval info: CONSTANT: INIT_TO_ZERO STRING "NO"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone"
// Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altmem_init"
// Retrieval info: CONSTANT: NUMWORDS NUMERIC "32768"
// Retrieval info: CONSTANT: PORT_ROM_DATA_READY STRING "PORT_USED"
// Retrieval info: CONSTANT: ROM_READ_LATENCY NUMERIC "1"
// Retrieval info: CONSTANT: WIDTH NUMERIC "8"
// Retrieval info: CONSTANT: WIDTHAD NUMERIC "15"
// Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL "clock"
// Retrieval info: CONNECT: @clock 0 0 0 0 clock 0 0 0 0
// Retrieval info: USED_PORT: datain 0 0 8 0 INPUT NODEFVAL "datain[7..0]"
// Retrieval info: CONNECT: @datain 0 0 8 0 datain 0 0 8 0
// Retrieval info: USED_PORT: dataout 0 0 8 0 OUTPUT NODEFVAL "dataout[7..0]"
// Retrieval info: CONNECT: dataout 0 0 8 0 @dataout 0 0 8 0
// Retrieval info: USED_PORT: init 0 0 0 0 INPUT NODEFVAL "init"
// Retrieval info: CONNECT: @init 0 0 0 0 init 0 0 0 0
// Retrieval info: USED_PORT: init_busy 0 0 0 0 OUTPUT NODEFVAL "init_busy"
// Retrieval info: CONNECT: init_busy 0 0 0 0 @init_busy 0 0 0 0
// Retrieval info: USED_PORT: ram_address 0 0 15 0 OUTPUT NODEFVAL "ram_address[14..0]"
// Retrieval info: CONNECT: ram_address 0 0 15 0 @ram_address 0 0 15 0
// Retrieval info: USED_PORT: ram_wren 0 0 0 0 OUTPUT NODEFVAL "ram_wren"
// Retrieval info: CONNECT: ram_wren 0 0 0 0 @ram_wren 0 0 0 0
// Retrieval info: USED_PORT: rom_address 0 0 15 0 OUTPUT NODEFVAL "rom_address[14..0]"
// Retrieval info: CONNECT: rom_address 0 0 15 0 @rom_address 0 0 15 0
// Retrieval info: USED_PORT: rom_data_ready 0 0 0 0 INPUT NODEFVAL "rom_data_ready"
// Retrieval info: CONNECT: @rom_data_ready 0 0 0 0 rom_data_ready 0 0 0 0
// Retrieval info: USED_PORT: rom_rden 0 0 0 0 OUTPUT NODEFVAL "rom_rden"
// Retrieval info: CONNECT: rom_rden 0 0 0 0 @rom_rden 0 0 0 0
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram.v TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram.qip TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram.bsf FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram_inst.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram_bb.v FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram.inc FALSE TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL rom2ram.cmp FALSE TRUE
// Retrieval info: LIB_FILE: lpm

26
fpga/syn/sof2jic.cof Normal file
View File

@ -0,0 +1,26 @@
<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>
<cof>
<eprom_name>EPCS4</eprom_name>
<flash_loader_device>EP1C3</flash_loader_device>
<output_filename>output/zx_ula.jic</output_filename>
<n_pages>1</n_pages>
<width>1</width>
<mode>7</mode>
<hex_block>
<hex_filename>../../rom/testrom.hex</hex_filename>
<hex_addressing>relative</hex_addressing>
<hex_offset>0</hex_offset>
</hex_block>
<sof_data>
<user_name>Page_0</user_name>
<page_flags>1</page_flags>
<bit0>
<sof_filename>output/zx_ula.sof</sof_filename>
</bit0>
</sof_data>
<version>5</version>
<create_cvp_file>0</create_cvp_file>
<options>
<map_file>1</map_file>
</options>
</cof>

30
fpga/syn/zx_ula.qpf Executable file
View File

@ -0,0 +1,30 @@
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2009 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II
# Version 9.0 Build 235 06/17/2009 Service Pack 2 SJ Web Edition
# Date created = 08:15:12 April 28, 2019
#
# -------------------------------------------------------------------------- #
QUARTUS_VERSION = "9.0"
DATE = "08:15:12 April 28, 2019"
# Revisions
PROJECT_REVISION = "zx_ula"

177
fpga/syn/zx_ula.qsf Executable file
View File

@ -0,0 +1,177 @@
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2009 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II
# Version 9.0 Build 235 06/17/2009 Service Pack 2 SJ Web Edition
# Date created = 08:15:12 April 28, 2019
#
# -------------------------------------------------------------------------- #
#
# Notes:
#
# 1) The default values for assignments are stored in the file:
# zx_ula_assignment_defaults.qdf
# If this file doesn't exist, see file:
# assignment_defaults.qdf
#
# 2) Altera recommends that you do not modify this file. This
# file is updated automatically by the Quartus II software
# and any changes you make may be lost or overwritten.
#
# -------------------------------------------------------------------------- #
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C3T100C8
set_global_assignment -name TOP_LEVEL_ENTITY zx_ula
set_global_assignment -name ORIGINAL_QUARTUS_VERSION "9.0 SP2"
set_global_assignment -name PROJECT_CREATION_TIME_DATE "08:15:12 APRIL 28, 2019"
set_global_assignment -name LAST_QUARTUS_VERSION "13.0 SP1"
set_global_assignment -name USE_GENERATED_PHYSICAL_CONSTRAINTS OFF -section_id eda_blast_fpga
set_global_assignment -name MAX7000_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_global_assignment -name VERILOG_INPUT_VERSION SYSTEMVERILOG_2005
set_global_assignment -name VERILOG_SHOW_LMF_MAPPING_MESSAGES OFF
set_global_assignment -name MAX7000_OPTIMIZATION_TECHNIQUE AREA
set_global_assignment -name FMAX_REQUIREMENT "14.4 MHz"
set_global_assignment -name FMAX_REQUIREMENT "14.4 MHz" -section_id clk14
set_global_assignment -name FMAX_REQUIREMENT "7.156 MHz" -section_id clkcpu
set_instance_assignment -name CLOCK_SETTINGS clkcpu -to clkcpu
set_global_assignment -name AUTO_RESOURCE_SHARING OFF
set_global_assignment -name AUTO_LCELL_INSERTION OFF
set_global_assignment -name FMAX_REQUIREMENT "32 MHz" -section_id clk32
set_instance_assignment -name CLOCK_SETTINGS clk32 -to clk32
set_global_assignment -name FMAX_REQUIREMENT "8 MHz" -section_id clk8
set_global_assignment -name FMAX_REQUIREMENT "4 MHz" -section_id clk4
set_instance_assignment -name CLOCK_SETTINGS clk8 -to "lpm_counter:wgcnt_rtl_1|dffs[1]"
set_instance_assignment -name CLOCK_SETTINGS clk4 -to "lpm_counter:wgcnt_rtl_1|dffs[2]"
set_global_assignment -name OPTIMIZE_HOLD_TIMING OFF
set_global_assignment -name FITTER_EFFORT "STANDARD FIT"
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output/
set_global_assignment -name FMAX_REQUIREMENT "7.156 MHz" -section_id clk7
set_global_assignment -name DUTY_CYCLE 40 -section_id clk7
set_global_assignment -name SAVE_DISK_SPACE OFF
set_global_assignment -name SMART_RECOMPILE ON
set_global_assignment -name POWER_USE_PVA OFF
set_global_assignment -name OPTIMIZE_MULTI_CORNER_TIMING OFF
set_global_assignment -name SLOW_SLEW_RATE OFF
set_global_assignment -name SYNTH_TIMING_DRIVEN_SYNTHESIS OFF
set_global_assignment -name DEVICE_FILTER_PIN_COUNT 100
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION "NO HEAT SINK WITH STILL AIR"
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_rd
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_wr
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to sd_cd
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_m1
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_mreq
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_rfsh
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_rstcpu
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to n_nmi
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING -section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name USE_CONFIGURATION_DEVICE ON
set_global_assignment -name RESERVE_ASDO_AFTER_CONFIGURATION "USE AS REGULAR IO"
set_global_assignment -name CYCLONE_CONFIGURATION_DEVICE EPCS4
set_location_assignment PIN_1 -to va[10]
set_location_assignment PIN_2 -to va[5]
set_location_assignment PIN_3 -to vd[4]
set_location_assignment PIN_4 -to va[12]
set_location_assignment PIN_5 -to va[11]
set_location_assignment PIN_20 -to ps2_data
set_location_assignment PIN_21 -to ps2_clk
set_location_assignment PIN_22 -to chroma[0]
set_location_assignment PIN_23 -to chroma[1]
set_location_assignment PIN_24 -to chroma[2]
set_location_assignment PIN_25 -to csync
set_location_assignment PIN_26 -to vdac[5]
set_location_assignment PIN_27 -to vdac[4]
set_location_assignment PIN_28 -to vdac[3]
set_location_assignment PIN_29 -to vdac[2]
set_location_assignment PIN_34 -to vdac[1]
set_location_assignment PIN_35 -to vdac[0]
set_location_assignment PIN_36 -to snd_l
set_location_assignment PIN_37 -to snd_r
set_location_assignment PIN_38 -to sd_cd
set_location_assignment PIN_39 -to sd_cs
set_location_assignment PIN_40 -to sd_miso_tape_in
set_location_assignment PIN_41 -to sd_sck
set_location_assignment PIN_42 -to sd_mosi
set_location_assignment PIN_47 -to vd[2]
set_location_assignment PIN_48 -to vd[0]
set_location_assignment PIN_49 -to vd[7]
set_location_assignment PIN_50 -to vd[1]
set_location_assignment PIN_51 -to vd[6]
set_location_assignment PIN_52 -to n_mreq
set_location_assignment PIN_54 -to n_int
set_location_assignment PIN_55 -to n_nmi
set_location_assignment PIN_56 -to va[14]
set_location_assignment PIN_57 -to n_vrd
set_location_assignment PIN_65 -to va[16]
set_location_assignment PIN_68 -to va[18]
set_location_assignment PIN_69 -to va[15]
set_location_assignment PIN_70 -to va[13]
set_location_assignment PIN_71 -to n_vwr
set_location_assignment PIN_72 -to va[17]
set_location_assignment PIN_73 -to clkcpu
set_location_assignment PIN_74 -to n_wr
set_location_assignment PIN_75 -to n_rd
set_location_assignment PIN_76 -to a[14]
set_location_assignment PIN_77 -to a[15]
set_location_assignment PIN_78 -to a[13]
set_location_assignment PIN_79 -to vd[5]
set_location_assignment PIN_84 -to n_rstcpu
set_location_assignment PIN_85 -to n_m1
set_location_assignment PIN_86 -to n_rfsh
set_location_assignment PIN_87 -to vd[3]
set_location_assignment PIN_88 -to va[0]
set_location_assignment PIN_89 -to va[1]
set_location_assignment PIN_90 -to va[2]
set_location_assignment PIN_91 -to va[3]
set_location_assignment PIN_92 -to va[4]
set_location_assignment PIN_97 -to va[6]
set_location_assignment PIN_98 -to va[7]
set_location_assignment PIN_99 -to va[8]
set_location_assignment PIN_100 -to va[9]
set_global_assignment -name RESERVE_ALL_UNUSED_PINS "AS INPUT TRI-STATED WITH WEAK PULL-UP"
set_location_assignment PIN_53 -to n_iorq
set_location_assignment PIN_10 -to clk28
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/mixer.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/soundrive.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/screen.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/ports.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/magic.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/divmmc.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/cpucontrol.sv
set_global_assignment -name VERILOG_FILE ../rtl/chroma_gen.v
set_global_assignment -name VHDL_FILE ../rtl/ym2149.vhd
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/common.sv
set_global_assignment -name SYSTEMVERILOG_FILE ../rtl/top.sv
set_global_assignment -name SDC_FILE clocks.sdc
set_global_assignment -name CDF_FILE output/zx_ula.cdf
set_global_assignment -name QIP_FILE ip/pll.qip
set_global_assignment -name QIP_FILE ip/rom2ram.qip
set_global_assignment -name QIP_FILE ip/asmi.qip
set_global_assignment -name ENABLE_SIGNALTAP OFF
set_global_assignment -name USE_SIGNALTAP_FILE stp1.stp
set_global_assignment -name SIGNALTAP_FILE stp1.stp
set_global_assignment -name SLD_FILE "stp1_auto_stripped.stp"
set_global_assignment -name RTLV_GROUP_RELATED_NODES OFF
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top