Files
TSConf_MiST/rtl/sound/jt12/jt12_op.v
Eugene Lozovoy ba7d903e12 update JT12
2024-09-10 17:07:34 +03:00

332 lines
9.4 KiB
Verilog

/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
module jt12_op(
input rst,
input clk,
input clk_en /* synthesis direct_enable */,
input [9:0] pg_phase_VIII,
input [9:0] eg_atten_IX, // output from envelope generator
input [2:0] fb_II, // voice feedback
input xuse_prevprev1,
input xuse_prev2,
input xuse_internal,
input yuse_prev1,
input yuse_prev2,
input yuse_internal,
input test_214,
input s1_enters,
input s2_enters,
input s3_enters,
input s4_enters,
input zero,
output signed [ 8:0] op_result,
output signed [13:0] full_result
);
parameter num_ch = 6;
/* enters exits
S1 S2
S3 S4
S2 S1
S4 S3
*/
reg [13:0] op_result_internal, op_XII;
reg [11:0] atten_internal_IX;
assign op_result = op_result_internal[13:5];
assign full_result = op_result_internal;
reg signbit_IX, signbit_X, signbit_XI;
reg [11:0] totalatten_X;
wire [13:0] prev1, prevprev1, prev2;
reg [13:0] prev1_din, prevprev1_din, prev2_din;
always @(*)
if( num_ch==3 ) begin
prev1_din = s1_enters ? op_result_internal : prev1;
prevprev1_din = s3_enters ? op_result_internal : prevprev1;
prev2_din = s2_enters ? op_result_internal : prev2;
end else begin // 6 channels
prev1_din = s2_enters ? op_result_internal : prev1;
prevprev1_din = s2_enters ? prev1 : prevprev1;
prev2_din = s1_enters ? op_result_internal : prev2;
end
jt12_sh #( .width(14), .stages(num_ch)) prev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.din ( prev1_din ),
.drop ( prev1 )
);
jt12_sh #( .width(14), .stages(num_ch)) prevprev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.din ( prevprev1_din ),
.drop ( prevprev1 )
);
jt12_sh #( .width(14), .stages(num_ch)) prev2_buffer(
// .rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.din ( prev2_din ),
.drop ( prev2 )
);
reg [10:0] subtresult;
reg [12:0] shifter, shifter_2, shifter_3;
// REGISTER/CYCLE 1
// Creation of phase modulation (FM) feedback signal, before shifting
reg [13:0] x, y;
reg [14:0] xs, ys, pm_preshift_II;
reg s1_II;
always @(*) begin
casez( {xuse_prevprev1, xuse_prev2, xuse_internal })
3'b1??: x = prevprev1;
3'b01?: x = prev2;
3'b001: x = op_result_internal;
default: x = 14'd0;
endcase
casez( {yuse_prev1, yuse_prev2, yuse_internal })
3'b1??: y = prev1;
3'b01?: y = prev2;
3'b001: y = op_result_internal;
default: y = 14'd0;
endcase
xs = { x[13], x }; // sign-extend
ys = { y[13], y }; // sign-extend
end
always @(posedge clk) if( clk_en ) begin
pm_preshift_II <= xs + ys; // carry is discarded
s1_II <= s1_enters;
end
/* REGISTER/CYCLE 2-7 (also YM2612 extra cycles 1-6)
Shifting of FM feedback signal, adding phase from PG to FM phase
In YM2203, phasemod_II is not registered at all, it is latched on the first edge
in add_pg_phase and the second edge is the output of add_pg_phase. In the YM2612, there
are 6 cycles worth of registers between the generated (non-registered) phasemod_II signal
and the input to add_pg_phase. */
reg [9:0] phasemod_II;
wire [9:0] phasemod_VIII;
always @(*) begin
// Shift FM feedback signal
if (!s1_II ) // Not S1
phasemod_II = pm_preshift_II[10:1]; // Bit 0 of pm_preshift_II is never used
else // S1
case( fb_II )
3'd0: phasemod_II = 10'd0;
3'd1: phasemod_II = { {4{pm_preshift_II[14]}}, pm_preshift_II[14:9] };
3'd2: phasemod_II = { {3{pm_preshift_II[14]}}, pm_preshift_II[14:8] };
3'd3: phasemod_II = { {2{pm_preshift_II[14]}}, pm_preshift_II[14:7] };
3'd4: phasemod_II = { pm_preshift_II[14], pm_preshift_II[14:6] };
3'd5: phasemod_II = pm_preshift_II[14:5];
3'd6: phasemod_II = pm_preshift_II[13:4];
3'd7: phasemod_II = pm_preshift_II[12:3];
endcase
end
// REGISTER/CYCLE 2-7
//generate
// if( num_ch==6 )
jt12_sh #( .width(10), .stages(6)) phasemod_sh(
.clk ( clk ),
.clk_en ( clk_en),
.din ( phasemod_II ),
.drop ( phasemod_VIII )
);
// else begin
// assign phasemod_VIII = phasemod_II;
// end
// endgenerate
// REGISTER/CYCLE 8
reg [ 9:0] phase;
// Sets the maximum number of fanouts for a register or combinational
// cell. The Quartus II software will replicate the cell and split
// the fanouts among the duplicates until the fanout of each cell
// is below the maximum.
reg [ 7:0] aux_VIII;
always @(*) begin
phase = phasemod_VIII + pg_phase_VIII;
aux_VIII= phase[7:0] ^ {8{~phase[8]}};
end
always @(posedge clk) if( clk_en ) begin
signbit_IX <= phase[9];
end
wire [11:0] logsin_IX;
jt12_logsin u_logsin (
.clk ( clk ),
.clk_en ( clk_en ),
.addr ( aux_VIII[7:0] ),
.logsin ( logsin_IX )
);
// REGISTER/CYCLE 9
// Sine table
// Main sine table body
always @(*) begin
subtresult = eg_atten_IX + logsin_IX[11:2];
atten_internal_IX = { subtresult[9:0], logsin_IX[1:0] } | {12{subtresult[10]}};
end
wire [9:0] mantissa_X;
reg [9:0] mantissa_XI;
reg [3:0] exponent_X, exponent_XI;
jt12_exprom u_exprom(
.clk ( clk ),
.clk_en ( clk_en ),
.addr ( atten_internal_IX[7:0] ),
.exp ( mantissa_X )
);
always @(posedge clk) if( clk_en ) begin
exponent_X <= atten_internal_IX[11:8];
signbit_X <= signbit_IX;
end
always @(posedge clk) if( clk_en ) begin
mantissa_XI <= mantissa_X;
exponent_XI <= exponent_X;
signbit_XI <= signbit_X;
end
// REGISTER/CYCLE 11
// Introduce test bit as MSB, 2's complement & Carry-out discarded
always @(*) begin
// Floating-point to integer, and incorporating sign bit
// Two-stage shifting of mantissa_XI by exponent_XI
shifter = { 3'b001, mantissa_XI };
case( ~exponent_XI[1:0] )
2'b00: shifter_2 = { 1'b0, shifter[12:1] }; // LSB discarded
2'b01: shifter_2 = shifter;
2'b10: shifter_2 = { shifter[11:0], 1'b0 };
2'b11: shifter_2 = { shifter[10:0], 2'b0 };
endcase
case( ~exponent_XI[3:2] )
2'b00: shifter_3 = {12'b0, shifter_2[12] };
2'b01: shifter_3 = { 8'b0, shifter_2[12:8] };
2'b10: shifter_3 = { 4'b0, shifter_2[12:4] };
2'b11: shifter_3 = shifter_2;
endcase
end
always @(posedge clk) if( clk_en ) begin
// REGISTER CYCLE 11
op_XII <= ({ test_214, shifter_3 } ^ {14{signbit_XI}}) + {13'd0,signbit_XI};
// REGISTER CYCLE 12
// Extra register, take output after here
op_result_internal <= op_XII;
end
`ifdef SIMULATION
reg signed [13:0] op_sep2_0;
reg signed [13:0] op_sep4_0;
reg signed [13:0] op_sep5_0;
reg signed [13:0] op_sep6_0;
reg signed [13:0] op_sep0_0;
reg signed [13:0] op_sep1_0;
reg signed [13:0] op_sep2_1;
reg signed [13:0] op_sep4_1;
reg signed [13:0] op_sep5_1;
reg signed [13:0] op_sep6_1;
reg signed [13:0] op_sep0_1;
reg signed [13:0] op_sep1_1;
reg signed [13:0] op_sep2_2;
reg signed [13:0] op_sep4_2;
reg signed [13:0] op_sep5_2;
reg signed [13:0] op_sep6_2;
reg signed [13:0] op_sep0_2;
reg signed [13:0] op_sep1_2;
reg signed [13:0] op_sep2_3;
reg signed [13:0] op_sep4_3;
reg signed [13:0] op_sep5_3;
reg signed [13:0] op_sep6_3;
reg signed [13:0] op_sep0_3;
reg signed [13:0] op_sep1_3;
reg [ 4:0] sepcnt;
always @(posedge clk) if(clk_en) begin
sepcnt <= zero ? 5'd0 : sepcnt+5'd1;
case( (sepcnt+14)%24 )
0: op_sep0_0 <= op_XII;
1: op_sep1_0 <= op_XII;
2: op_sep2_0 <= op_XII;
3: op_sep4_0 <= op_XII;
4: op_sep5_0 <= op_XII;
5: op_sep6_0 <= op_XII;
6: op_sep0_2 <= op_XII;
7: op_sep1_2 <= op_XII;
8: op_sep2_2 <= op_XII;
9: op_sep4_2 <= op_XII;
10: op_sep5_2 <= op_XII;
11: op_sep6_2 <= op_XII;
12: op_sep0_1 <= op_XII;
13: op_sep1_1 <= op_XII;
14: op_sep2_1 <= op_XII;
15: op_sep4_1 <= op_XII;
16: op_sep5_1 <= op_XII;
17: op_sep6_1 <= op_XII;
18: op_sep0_3 <= op_XII;
19: op_sep1_3 <= op_XII;
20: op_sep2_3 <= op_XII;
21: op_sep4_3 <= op_XII;
22: op_sep5_3 <= op_XII;
23: op_sep6_3 <= op_XII;
endcase
end
`endif
endmodule