Files
TSConf_MiST/rtl/sound/jt12/jt12_top.v
2020-05-11 23:43:24 +08:00

477 lines
14 KiB
Verilog

/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2016
Based on information posted by Nemesis on:
http://gendev.spritesmind.net/forum/viewtopic.php?t=386&postdays=0&postorder=asc&start=167
Based on jt51_phasegen.v, from JT51
*/
module jt12_top (
input rst, // rst should be at least 6 clk&cen cycles long
input clk, // CPU clock
input cen, // optional clock enable, it not needed leave as 1'b1
input [7:0] din,
input [1:0] addr,
input cs_n,
input wr_n,
output [7:0] dout,
output irq_n,
// Separated output
output [ 7:0] psg_A,
output [ 7:0] psg_B,
output [ 7:0] psg_C,
output signed [15:0] fm_snd_left,
output signed [15:0] fm_snd_right,
// combined output
output [ 9:0] psg_snd,
output signed [15:0] snd_right, // FM+PSG
output signed [15:0] snd_left, // FM+PSG
output snd_sample
);
parameter use_lfo=1, use_ssg=0, num_ch=6, use_pcm=1, use_lr=1; // defaults to YM2612
wire flag_A, flag_B, busy;
wire [7:0] fm_dout = { busy, 5'd0, flag_B, flag_A };
wire write = !cs_n && !wr_n;
wire clk_en, clk_en_ssg;
// Timers
wire [9:0] value_A;
wire [7:0] value_B;
wire load_A, load_B;
wire enable_irq_A, enable_irq_B;
wire clr_flag_A, clr_flag_B;
wire overflow_A;
wire fast_timers;
wire zero; // Single-clock pulse at the begginig of s1_enters
// LFO
wire [2:0] lfo_freq;
wire lfo_en;
// Operators
wire amsen_IV;
wire [ 2:0] dt1_I;
wire [ 3:0] mul_II;
wire [ 6:0] tl_IV;
wire [ 4:0] keycode_II;
wire [ 4:0] ar_I;
wire [ 4:0] d1r_I;
wire [ 4:0] d2r_I;
wire [ 3:0] rr_I;
wire [ 3:0] sl_I;
wire [ 1:0] ks_II;
// SSG operation
wire ssg_en_I;
wire [2:0] ssg_eg_I;
// envelope operation
wire keyon_I;
wire [9:0] eg_IX;
wire pg_rst_II;
// Channel
wire [10:0] fnum_I;
wire [ 2:0] block_I;
wire [ 1:0] rl;
wire [ 2:0] fb_II;
wire [ 2:0] alg_I;
wire [ 2:0] pms_I;
wire [ 1:0] ams_IV;
// PCM
wire pcm_en, pcm_wr;
wire [ 8:0] pcm;
// Test
wire pg_stop, eg_stop;
wire ch6op;
// Operator
wire xuse_internal, yuse_internal;
wire xuse_prevprev1, xuse_prev2, yuse_prev1, yuse_prev2;
wire [ 9:0] phase_VIII;
wire s1_enters, s2_enters, s3_enters, s4_enters;
wire rst_int;
// LFO
wire [6:0] lfo_mod;
wire lfo_rst;
// PSG
wire [3:0] psg_addr;
wire [7:0] psg_data, psg_dout;
wire psg_wr_n;
jt12_mmr #(.use_ssg(use_ssg),.num_ch(num_ch),.use_pcm(use_pcm))
u_mmr(
.rst ( rst ),
.clk ( clk ),
.cen ( cen ), // external clock enable
.clk_en ( clk_en ), // internal clock enable
.clk_en_ssg ( clk_en_ssg), // internal clock enable
.din ( din ),
.write ( write ),
.addr ( addr ),
.busy ( busy ),
.ch6op ( ch6op ),
// LFO
.lfo_freq ( lfo_freq ),
.lfo_en ( lfo_en ),
// Timers
.value_A ( value_A ),
.value_B ( value_B ),
.load_A ( load_A ),
.load_B ( load_B ),
.enable_irq_A ( enable_irq_A ),
.enable_irq_B ( enable_irq_B ),
.clr_flag_A ( clr_flag_A ),
.clr_flag_B ( clr_flag_B ),
.flag_A ( flag_A ),
.overflow_A ( overflow_A ),
.fast_timers( fast_timers ),
// PCM
.pcm ( pcm ),
.pcm_en ( pcm_en ),
.pcm_wr ( pcm_wr ),
// Operator
.xuse_prevprev1 ( xuse_prevprev1 ),
.xuse_internal ( xuse_internal ),
.yuse_internal ( yuse_internal ),
.xuse_prev2 ( xuse_prev2 ),
.yuse_prev1 ( yuse_prev1 ),
.yuse_prev2 ( yuse_prev2 ),
// PG
.fnum_I ( fnum_I ),
.block_I ( block_I ),
.pg_stop ( pg_stop ),
// EG
.rl ( rl ),
.fb_II ( fb_II ),
.alg_I ( alg_I ),
.pms_I ( pms_I ),
.ams_IV ( ams_IV ),
.amsen_IV ( amsen_IV ),
.dt1_I ( dt1_I ),
.mul_II ( mul_II ),
.tl_IV ( tl_IV ),
.ar_I ( ar_I ),
.d1r_I ( d1r_I ),
.d2r_I ( d2r_I ),
.rr_I ( rr_I ),
.sl_I ( sl_I ),
.ks_II ( ks_II ),
.eg_stop ( eg_stop ),
// SSG operation
.ssg_en_I ( ssg_en_I ),
.ssg_eg_I ( ssg_eg_I ),
.keyon_I ( keyon_I ),
// Operator
.zero ( zero ),
.s1_enters ( s1_enters ),
.s2_enters ( s2_enters ),
.s3_enters ( s3_enters ),
.s4_enters ( s4_enters ),
// PSG interace
.psg_addr ( psg_addr ),
.psg_data ( psg_data ),
.psg_wr_n ( psg_wr_n )
);
jt12_timers u_timers(
.clk ( clk ),
.clk_en ( clk_en | fast_timers ),
.rst ( rst ),
.value_A ( value_A ),
.value_B ( value_B ),
.load_A ( load_A ),
.load_B ( load_B ),
.enable_irq_A( enable_irq_B ),
.enable_irq_B( enable_irq_A ),
.clr_flag_A ( clr_flag_A ),
.clr_flag_B ( clr_flag_B ),
.flag_A ( flag_A ),
.flag_B ( flag_B ),
.overflow_A ( overflow_A ),
.irq_n ( irq_n )
);
// YM2203 does not have LFO
generate
if( use_lfo== 1)
jt12_lfo u_lfo(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.zero ( zero ),
`ifdef NOLFO
.lfo_rst ( 1'b1 ),
`else
.lfo_rst ( 1'b0 ),
`endif
.lfo_en ( lfo_en ),
.lfo_freq ( lfo_freq ),
.lfo_mod ( lfo_mod )
);
else
assign lfo_mod = 7'd0;
endgenerate
// YM2203/YM2610 have a PSG
generate
if( use_ssg==1 ) begin
ym2149 u_psg
(
.CLK(clk),
.CE(clk_en_ssg),
.RESET(rst),
.BDIR(write),
.BC(~addr[0] | ~write),
.DI(din),
.DO(psg_dout),
.CHANNEL_A(psg_A),
.CHANNEL_B(psg_B),
.CHANNEL_C(psg_C)
);
assign psg_snd = {2'b00, psg_A} + {2'b00, psg_B} + {2'b00, psg_C};
assign snd_left = fm_snd_left + { 2'b0, psg_snd[9:1],5'd0};
assign snd_right = fm_snd_right + { 2'b0, psg_snd[9:1],5'd0};
assign dout = addr[0] ? psg_dout : fm_dout;
end else begin
assign psg_snd = 10'd0;
assign snd_left = fm_snd_left;
assign snd_right= fm_snd_right;
assign psg_dout = 8'd0;
assign dout = fm_dout;
end
endgenerate
`ifndef TIMERONLY
jt12_pg #(.num_ch(num_ch)) u_pg(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
// Channel frequency
.fnum_I ( fnum_I ),
.block_I ( block_I ),
// Operator multiplying
.mul_II ( mul_II ),
// Operator detuning
.dt1_I ( dt1_I ), // same as JT51's DT1
// Phase modulation by LFO
.lfo_mod ( lfo_mod ),
.pms_I ( pms_I ),
// phase operation
.pg_rst_II ( pg_rst_II ),
.pg_stop ( pg_stop ),
.keycode_II ( keycode_II ),
.phase_VIII ( phase_VIII )
);
wire [9:0] eg_V;
jt12_eg #(.num_ch(num_ch)) u_eg(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.zero ( zero ),
.eg_stop ( eg_stop ),
// envelope configuration
.keycode_II ( keycode_II ),
.arate_I ( ar_I ), // attack rate
.rate1_I ( d1r_I ), // decay rate
.rate2_I ( d2r_I ), // sustain rate
.rrate_I ( rr_I ), // release rate
.sl_I ( sl_I ), // sustain level
.ks_II ( ks_II ), // key scale
// SSG operation
.ssg_en_I ( ssg_en_I ),
.ssg_eg_I ( ssg_eg_I ),
// envelope operation
.keyon_I ( keyon_I ),
// envelope number
.lfo_mod ( lfo_mod ),
.tl_IV ( tl_IV ),
.ams_IV ( ams_IV ),
.amsen_IV ( amsen_IV ),
.eg_V ( eg_V ),
.pg_rst_II ( pg_rst_II )
);
jt12_sh #(.width(10),.stages(4)) u_egpad(
.clk ( clk ),
.clk_en ( clk_en ),
.din ( eg_V ),
.drop ( eg_IX )
);
wire [ 8:0] op_result;
wire [13:0] full_result;
jt12_op #(.num_ch(num_ch)) u_op(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.pg_phase_VIII ( phase_VIII ),
.eg_atten_IX ( eg_IX ),
.fb_II ( fb_II ),
.test_214 ( 1'b0 ),
.s1_enters ( s1_enters ),
.s2_enters ( s2_enters ),
.s3_enters ( s3_enters ),
.s4_enters ( s4_enters ),
.xuse_prevprev1 ( xuse_prevprev1),
.xuse_internal ( xuse_internal ),
.yuse_internal ( yuse_internal ),
.xuse_prev2 ( xuse_prev2 ),
.yuse_prev1 ( yuse_prev1 ),
.yuse_prev2 ( yuse_prev2 ),
.zero ( zero ),
.op_result ( op_result ),
.full_result ( full_result )
);
generate
if( use_lr==1 ) begin
assign fm_snd_right[3:0] = 4'd0;
assign fm_snd_left [3:0] = 4'd0;
assign snd_sample = zero;
wire signed [8:0] pcm2;
// interpolate PCM samples with automatic sample rate detection
// this feature is not present in original YM2612
// this improves PCM sample sound greatly
jt12_pcm u_pcm(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.zero ( zero ),
.pcm ( pcm ),
.pcm_wr ( pcm_wr ),
.pcm_resampled ( pcm2 )
);
jt12_acc #(.num_ch(num_ch)) u_acc(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.op_result ( op_result ),
.rl ( rl ),
// note that the order changes to deal
// with the operator pipeline delay
.zero ( zero ),
.s1_enters ( s2_enters ),
.s2_enters ( s1_enters ),
.s3_enters ( s4_enters ),
.s4_enters ( s3_enters ),
.ch6op ( ch6op ),
.pcm_en ( pcm_en ), // only enabled for channel 6
.pcm ( pcm2 ),
.alg ( alg_I ),
// combined output
.left ( fm_snd_left [15:4] ),
.right ( fm_snd_right[15:4] )
);
end else begin
wire signed [15:0] mono_snd;
assign fm_snd_left = mono_snd;
assign fm_snd_right = mono_snd;
assign snd_sample = zero;
jt03_acc u_acc(
.rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.op_result ( full_result ),
// note that the order changes to deal
// with the operator pipeline delay
.s1_enters ( s1_enters ),
.s2_enters ( s2_enters ),
.s3_enters ( s3_enters ),
.s4_enters ( s4_enters ),
.alg ( alg_I ),
.zero ( zero ),
// combined output
.snd ( mono_snd )
);
end
endgenerate
`ifdef SIMULATION
/* verilator lint_off PINMISSING */
reg [4:0] sep24_cnt;
wire [9:0] eg_ch0s1, eg_ch1s1, eg_ch2s1, eg_ch3s1, eg_ch4s1, eg_ch5s1,
eg_ch0s2, eg_ch1s2, eg_ch2s2, eg_ch3s2, eg_ch4s2, eg_ch5s2,
eg_ch0s3, eg_ch1s3, eg_ch2s3, eg_ch3s3, eg_ch4s3, eg_ch5s3,
eg_ch0s4, eg_ch1s4, eg_ch2s4, eg_ch3s4, eg_ch4s4, eg_ch5s4;
always @(posedge clk) if( clk_en )
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
sep24 #( .width(10), .pos0(5'd0)) egsep
(
.clk ( clk ),
.clk_en ( clk_en ),
.mixed ( eg_IX ),
.mask ( 24'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (eg_ch0s1),
.ch1s1 (eg_ch1s1),
.ch2s1 (eg_ch2s1),
.ch3s1 (eg_ch3s1),
.ch4s1 (eg_ch4s1),
.ch5s1 (eg_ch5s1),
.ch0s2 (eg_ch0s2),
.ch1s2 (eg_ch1s2),
.ch2s2 (eg_ch2s2),
.ch3s2 (eg_ch3s2),
.ch4s2 (eg_ch4s2),
.ch5s2 (eg_ch5s2),
.ch0s3 (eg_ch0s3),
.ch1s3 (eg_ch1s3),
.ch2s3 (eg_ch2s3),
.ch3s3 (eg_ch3s3),
.ch4s3 (eg_ch4s3),
.ch5s3 (eg_ch5s3),
.ch0s4 (eg_ch0s4),
.ch1s4 (eg_ch1s4),
.ch2s4 (eg_ch2s4),
.ch3s4 (eg_ch3s4),
.ch4s4 (eg_ch4s4),
.ch5s4 (eg_ch5s4)
);
`endif
/* verilator lint_on PINMISSING */
`endif
endmodule