/* This file is part of JT12. JT12 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. JT12 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with JT12. If not, see . Author: Jose Tejada Gomez. Twitter: @topapate Version: 1.0 Date: 14-2-2017 */ `timescale 1ns / 1ps module jt12_mmr( input rst, input clk, input cen, output clk_en, output clk_en_ssg, input [7:0] din, input write, input [1:0] addr, output reg busy, output ch6op, // LFO output reg [2:0] lfo_freq, output reg lfo_en, // Timers output reg [9:0] value_A, output reg [7:0] value_B, output reg load_A, output reg load_B, output reg enable_irq_A, output reg enable_irq_B, output reg clr_flag_A, output reg clr_flag_B, output reg fast_timers, input flag_A, input overflow_A, // PCM output reg [8:0] pcm, output reg pcm_en, output reg pcm_wr, // high for one clock cycle when PCM is written // Operator output xuse_prevprev1, output xuse_internal, output yuse_internal, output xuse_prev2, output yuse_prev1, output yuse_prev2, // PG output [10:0] fnum_I, output [ 2:0] block_I, output reg pg_stop, // REG output [ 1:0] rl, output [ 2:0] fb_II, output [ 2:0] alg_I, output [ 2:0] pms_I, output [ 1:0] ams_IV, output amsen_IV, output [ 2:0] dt1_I, output [ 3:0] mul_II, output [ 6:0] tl_IV, output reg eg_stop, output [ 4:0] ar_I, output [ 4:0] d1r_I, output [ 4:0] d2r_I, output [ 3:0] rr_I, output [ 3:0] sl_I, output [ 1:0] ks_II, // SSG operation output ssg_en_I, output [2:0] ssg_eg_I, output keyon_I, // output [ 1:0] cur_op, // Operator output zero, output s1_enters, output s2_enters, output s3_enters, output s4_enters, // PSG interace output [3:0] psg_addr, output [7:0] psg_data, output reg psg_wr_n ); parameter use_ssg=0, num_ch=6, use_pcm=1; `ifdef SIMULATION initial begin cen_cnt = 3'd0; end `include "jt12_mmr_sim.vh" `endif reg [1:0] div_setting; jt12_div #(.use_ssg(use_ssg),.num_ch(num_ch)) u_div ( .rst ( rst ), .clk ( clk ), .cen ( cen ), .div_setting ( div_setting ), .clk_en ( clk_en ), .clk_en_ssg ( clk_en_ssg ) ); reg [7:0] selected_register; //reg sch; // 0 => CH1~CH3 only available. 1=>CH4~CH6 /* reg irq_zero_en, irq_brdy_en, irq_eos_en, irq_tb_en, irq_ta_en; */ reg [6:0] up_opreg; // hot-one encoding. tells which operator register gets updated next reg [2:0] up_chreg; // hot-one encoding. tells which channel register gets updated next reg up_keyon; wire busy_reg; parameter REG_TESTYM = 8'h21, REG_LFO = 8'h22, REG_CLKA1 = 8'h24, REG_CLKA2 = 8'h25, REG_CLKB = 8'h26, REG_TIMER = 8'h27, REG_KON = 8'h28, REG_IRQMASK = 8'h29, REG_PCM = 8'h2A, REG_PCM_EN = 8'h2B, REG_DACTEST = 8'h2C, REG_CLK_N6 = 8'h2D, REG_CLK_N3 = 8'h2E, REG_CLK_N2 = 8'h2F; reg csm, effect; reg [ 2:0] block_ch3op2, block_ch3op3, block_ch3op1; reg [10:0] fnum_ch3op2, fnum_ch3op3, fnum_ch3op1; reg [ 5:0] latch_fnum; reg [2:0] up_ch; reg [1:0] up_op; reg old_write; reg [7:0] din_copy; always @(posedge clk) old_write <= write; generate if( use_ssg ) begin assign psg_addr = selected_register[3:0]; assign psg_data = din_copy; end else begin assign psg_addr = 4'd0; assign psg_data = 8'd0; end endgenerate reg part; // this runs at clk speed, no clock gating here always @(posedge clk) begin : memory_mapped_registers if( rst ) begin selected_register <= 8'h0; div_setting <= 2'b11; up_ch <= 3'd0; up_op <= 2'd0; up_keyon <= 1'd0; up_opreg <= 7'd0; up_chreg <= 3'd0; // IRQ Mask /*{ irq_zero_en, irq_brdy_en, irq_eos_en, irq_tb_en, irq_ta_en } = 5'h1f; */ // timers { value_A, value_B } <= 18'd0; { clr_flag_B, clr_flag_A, enable_irq_B, enable_irq_A, load_B, load_A } <= 6'd0; fast_timers <= 1'b0; // LFO lfo_freq <= 3'd0; lfo_en <= 1'b0; csm <= 1'b0; effect <= 1'b0; // PCM pcm <= 9'h0; pcm_en <= 1'b0; pcm_wr <= 1'b0; // sch <= 1'b0; // Original test features eg_stop <= 1'b0; pg_stop <= 1'b0; psg_wr_n <= 1'b1; end else begin // WRITE IN REGISTERS if( write ) begin if( !addr[0] ) begin selected_register <= din; part <= addr[1]; end else begin // Global registers din_copy <= din; up_keyon <= selected_register == REG_KON; up_ch <= {part, selected_register[1:0]}; up_op <= selected_register[3:2]; // 0=S1,1=S3,2=S2,3=S4 casez( selected_register) //REG_TEST: lfo_rst <= 1'b1; // regardless of din 8'h0?: psg_wr_n <= 1'b0; REG_TESTYM: begin eg_stop <= din[5]; pg_stop <= din[3]; fast_timers <= din[2]; end REG_CLKA1: value_A[9:2]<= din; REG_CLKA2: value_A[1:0]<= din[1:0]; REG_CLKB: value_B <= din; REG_TIMER: begin effect <= |din[7:6]; csm <= din[7:6] == 2'b10; { clr_flag_B, clr_flag_A, enable_irq_B, enable_irq_A, load_B, load_A } <= din[5:0]; end `ifndef NOLFO REG_LFO: { lfo_en, lfo_freq } <= din[3:0]; `endif // clock divider REG_CLK_N6: div_setting[1] <= 1'b1; REG_CLK_N3: div_setting[0] <= 1'b1; REG_CLK_N2: div_setting <= 2'b0; // CH3 special registers 8'hA9: { block_ch3op1, fnum_ch3op1 } <= { latch_fnum, din }; 8'hA8: { block_ch3op3, fnum_ch3op3 } <= { latch_fnum, din }; 8'hAA: { block_ch3op2, fnum_ch3op2 } <= { latch_fnum, din }; // According to http://www.mjsstuf.x10host.com/pages/vgmPlay/vgmPlay.htm // There is a single fnum latch for all channels 8'hA4, 8'hA5, 8'hA6, 8'hAD, 8'hAC, 8'hAE: latch_fnum <= din[5:0]; default:; // avoid incomplete-case warning endcase if( use_pcm==1 ) begin // for YM2612 only casez( selected_register) REG_DACTEST: pcm[0] <= din[3]; REG_PCM: pcm <= { ~din[7], din[6:0], 1'b1 }; REG_PCM_EN: pcm_en <= din[7]; default:; endcase pcm_wr <= selected_register==REG_PCM; end if( selected_register[1:0]==2'b11 ) { up_chreg, up_opreg } <= { 3'h0, 7'h0 }; else casez( selected_register ) // channel registers 8'hA0, 8'hA1, 8'hA2: { up_chreg, up_opreg } <= { 3'h1, 7'd0 }; // up_fnumlo // FB + Algorithm 8'hB0, 8'hB1, 8'hB2: { up_chreg, up_opreg } <= { 3'h2, 7'd0 }; // up_alg 8'hB4, 8'hB5, 8'hB6: { up_chreg, up_opreg } <= { 3'h4, 7'd0 }; // up_pms // operator registers 8'h3?: { up_chreg, up_opreg } <= { 3'h0, 7'h01 }; // up_dt1 8'h4?: { up_chreg, up_opreg } <= { 3'h0, 7'h02 }; // up_tl 8'h5?: { up_chreg, up_opreg } <= { 3'h0, 7'h04 }; // up_ks_ar 8'h6?: { up_chreg, up_opreg } <= { 3'h0, 7'h08 }; // up_amen_dr 8'h7?: { up_chreg, up_opreg } <= { 3'h0, 7'h10 }; // up_sr 8'h8?: { up_chreg, up_opreg } <= { 3'h0, 7'h20 }; // up_sl 8'h9?: { up_chreg, up_opreg } <= { 3'h0, 7'h40 }; // up_ssgeg default: { up_chreg, up_opreg } <= { 3'h0, 7'h0 }; endcase // selected_register end end else if(clk_en) begin /* clear once-only bits */ // lfo_rst <= 1'b0; { clr_flag_B, clr_flag_A } <= 2'd0; psg_wr_n <= 1'b1; pcm_wr <= 1'b0; end end end reg [4:0] busy_cnt; // busy lasts for 32 synth clock cycles, like in real chip always @(posedge clk) if( rst ) begin busy <= 1'b0; busy_cnt <= 5'd0; end else begin if (!old_write && write && addr[0] ) begin // only set for data writes busy <= 1'b1; busy_cnt <= 5'd0; end else if(clk_en) begin if( busy_cnt == 5'd31 ) busy <= 1'b0; busy_cnt <= busy_cnt+5'd1; end end jt12_reg #(.num_ch(num_ch)) u_reg( .rst ( rst ), .clk ( clk ), // P1 .clk_en ( clk_en ), .din ( din_copy ), .up_keyon ( up_keyon ), .up_fnumlo ( up_chreg[0] ), .up_alg ( up_chreg[1] ), .up_pms ( up_chreg[2] ), .up_dt1 ( up_opreg[0] ), .up_tl ( up_opreg[1] ), .up_ks_ar ( up_opreg[2] ), .up_amen_dr ( up_opreg[3] ), .up_sr ( up_opreg[4] ), .up_sl_rr ( up_opreg[5] ), .up_ssgeg ( up_opreg[6] ), .op ( up_op ), // operator to update .ch ( up_ch ), // channel to update .csm ( csm ), .flag_A ( flag_A ), .overflow_A ( overflow_A), .ch6op ( ch6op ), // CH3 Effect-mode operation .effect ( effect ), // allows independent freq. for CH 3 .fnum_ch3op2( fnum_ch3op2 ), .fnum_ch3op3( fnum_ch3op3 ), .fnum_ch3op1( fnum_ch3op1 ), .block_ch3op2( block_ch3op2 ), .block_ch3op3( block_ch3op3 ), .block_ch3op1( block_ch3op1 ), .latch_fnum ( latch_fnum ), // Operator .xuse_prevprev1 ( xuse_prevprev1 ), .xuse_internal ( xuse_internal ), .yuse_internal ( yuse_internal ), .xuse_prev2 ( xuse_prev2 ), .yuse_prev1 ( yuse_prev1 ), .yuse_prev2 ( yuse_prev2 ), // PG .fnum_I ( fnum_I ), .block_I ( block_I ), .mul_II ( mul_II ), .dt1_I ( dt1_I ), // EG .ar_I (ar_I ), // attack rate .d1r_I (d1r_I ), // decay rate .d2r_I (d2r_I ), // sustain rate .rr_I (rr_I ), // release rate .sl_I (sl_I ), // sustain level .ks_II (ks_II ), // key scale // SSG operation .ssg_en_I ( ssg_en_I ), .ssg_eg_I ( ssg_eg_I ), // envelope number .tl_IV (tl_IV ), .pms_I (pms_I ), .ams_IV (ams_IV ), .amsen_IV (amsen_IV ), // channel configuration .rl ( rl ), .fb_II ( fb_II ), .alg_I ( alg_I ), .keyon_I ( keyon_I ), .zero ( zero ), .s1_enters ( s1_enters ), .s2_enters ( s2_enters ), .s3_enters ( s3_enters ), .s4_enters ( s4_enters ) ); endmodule