Update turbosound.

This commit is contained in:
sorgelig
2020-05-11 23:43:24 +08:00
parent 5a66d5ec1c
commit c08d8479be
51 changed files with 4523 additions and 3446 deletions

View File

@ -4,121 +4,140 @@
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
module jt12_op(
input rst,
input clk,
input [9:0] pg_phase_VIII,
input [9:0] eg_atten_IX, // output from envelope generator
input [2:0] fb_II, // voice feedback
input use_prevprev1,
input use_internal_x,
input use_internal_y,
input use_prev2,
input use_prev1,
input test_214,
input s1_enters,
input s2_enters,
input s3_enters,
input s4_enters,
input zero,
input rst,
input clk,
input clk_en,
input [9:0] pg_phase_VIII,
input [9:0] eg_atten_IX, // output from envelope generator
input [2:0] fb_II, // voice feedback
input xuse_prevprev1,
input xuse_prev2,
input xuse_internal,
input yuse_prev1,
input yuse_prev2,
input yuse_internal,
input test_214,
output signed [8:0] op_result
input s1_enters,
input s2_enters,
input s3_enters,
input s4_enters,
input zero,
output signed [ 8:0] op_result,
output signed [13:0] full_result
);
/* enters exits
S1 S2
S3 S4
S2 S1
S4 S3
/* enters exits
S1 S2
S3 S4
S2 S1
S4 S3
*/
reg [13:0] op_result_internal, op_XII;
reg [11:0] atten_internal_IX;
reg [13:0] op_result_internal, op_XII;
reg [11:0] atten_internal_IX;
assign op_result = op_result_internal[13:5];
assign op_result = op_result_internal[13:5];
assign full_result = op_result_internal;
parameter NUM_VOICES = 6;
parameter num_ch = 6;
reg signbit_IX, signbit_X, signbit_XI;
reg [11:0] totalatten_X;
reg signbit_IX, signbit_X, signbit_XI;
reg [11:0] totalatten_X;
wire [13:0] prev1, prevprev1, prev2;
wire [13:0] prev1, prevprev1, prev2;
jt12_sh/*_rst*/ #( .width(14), .stages(NUM_VOICES)) prev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.din ( s2_enters ? op_result_internal : prev1 ),
.drop ( prev1 )
reg [13:0] prev1_din, prevprev1_din, prev2_din;
always @(*)
if( num_ch==3 ) begin
prev1_din = s1_enters ? op_result_internal : prev1;
prevprev1_din = s3_enters ? op_result_internal : prevprev1;
prev2_din = s2_enters ? op_result_internal : prev2;
end else begin // 6 channels
prev1_din = s2_enters ? op_result_internal : prev1;
prevprev1_din = s2_enters ? prev1 : prevprev1;
prev2_din = s1_enters ? op_result_internal : prev2;
end
jt12_sh #( .width(14), .stages(num_ch)) prev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.din ( prev1_din ),
.drop ( prev1 )
);
jt12_sh/*_rst*/ #( .width(14), .stages(NUM_VOICES)) prevprev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.din ( s2_enters ? prev1 : prevprev1 ),
.drop ( prevprev1 )
jt12_sh #( .width(14), .stages(num_ch)) prevprev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.din ( prevprev1_din ),
.drop ( prevprev1 )
);
jt12_sh/*_rst*/ #( .width(14), .stages(NUM_VOICES)) prev2_buffer(
// .rst ( rst ),
.clk ( clk ),
.din ( s1_enters ? op_result_internal : prev2 ),
.drop ( prev2 )
jt12_sh #( .width(14), .stages(num_ch)) prev2_buffer(
// .rst ( rst ),
.clk ( clk ),
.clk_en ( clk_en ),
.din ( prev2_din ),
.drop ( prev2 )
);
reg [18:0] stb;
reg [10:0] stf, stg;
reg [11:0] logsin;
reg [10:0] subtresult;
reg [10:0] subtresult;
reg [12:0] etb;
reg [ 9:0] etf, etg, mantissa_XI;
reg [ 3:0] exponent_XI;
reg [12:0] shifter, shifter_2, shifter_3;
reg [12:0] shifter, shifter_2, shifter_3;
// REGISTER/CYCLE 1
// Creation of phase modulation (FM) feedback signal, before shifting
reg [13:0] x, y;
reg [14:0] xs, ys, pm_preshift_II;
reg s1_II;
reg [14:0] xs, ys, pm_preshift_II;
reg s1_II;
always @(*) begin
x <= ( {14{use_prevprev1}} & prevprev1 ) |
( {14{use_internal_x}} & op_result_internal ) |
( {14{use_prev2}} & prev2 );
y <= ( {14{use_prev1}} & prev1 ) |
( {14{use_internal_y}} & op_result_internal );
xs <= { x[13], x }; // sign-extend
ys <= { y[13], y }; // sign-extend
casez( {xuse_prevprev1, xuse_prev2, xuse_internal })
3'b1??: x = prevprev1;
3'b01?: x = prev2;
3'b001: x = op_result_internal;
default: x = 14'd0;
endcase
casez( {yuse_prev1, yuse_prev2, yuse_internal })
3'b1??: y = prev1;
3'b01?: y = prev2;
3'b001: y = op_result_internal;
default: y = 14'd0;
endcase
xs = { x[13], x }; // sign-extend
ys = { y[13], y }; // sign-extend
end
always @(posedge clk) begin
pm_preshift_II <= xs + ys; // carry is discarded
always @(posedge clk) if( clk_en ) begin
pm_preshift_II <= xs + ys; // carry is discarded
s1_II <= s1_enters;
end
@ -129,407 +148,357 @@ end
are 6 cycles worth of registers between the generated (non-registered) phasemod_II signal
and the input to add_pg_phase. */
reg [9:0] phasemod_II;
wire [9:0] phasemod_VIII;
reg [9:0] phasemod_II;
wire [9:0] phasemod_VIII;
always @(*) begin
// Shift FM feedback signal
if (!s1_II ) // Not S1
phasemod_II <= pm_preshift_II[10:1]; // Bit 0 of pm_preshift_II is never used
else // S1
case( fb_II )
3'd0: phasemod_II <= 10'd0;
3'd1: phasemod_II <= { {4{pm_preshift_II[14]}}, pm_preshift_II[14:9] };
3'd2: phasemod_II <= { {3{pm_preshift_II[14]}}, pm_preshift_II[14:8] };
3'd3: phasemod_II <= { {2{pm_preshift_II[14]}}, pm_preshift_II[14:7] };
3'd4: phasemod_II <= { pm_preshift_II[14], pm_preshift_II[14:6] };
3'd5: phasemod_II <= pm_preshift_II[14:5];
3'd6: phasemod_II <= pm_preshift_II[13:4];
3'd7: phasemod_II <= pm_preshift_II[12:3];
endcase
// Shift FM feedback signal
if (!s1_II ) // Not S1
phasemod_II = pm_preshift_II[10:1]; // Bit 0 of pm_preshift_II is never used
else // S1
case( fb_II )
3'd0: phasemod_II = 10'd0;
3'd1: phasemod_II = { {4{pm_preshift_II[14]}}, pm_preshift_II[14:9] };
3'd2: phasemod_II = { {3{pm_preshift_II[14]}}, pm_preshift_II[14:8] };
3'd3: phasemod_II = { {2{pm_preshift_II[14]}}, pm_preshift_II[14:7] };
3'd4: phasemod_II = { pm_preshift_II[14], pm_preshift_II[14:6] };
3'd5: phasemod_II = pm_preshift_II[14:5];
3'd6: phasemod_II = pm_preshift_II[13:4];
3'd7: phasemod_II = pm_preshift_II[12:3];
endcase
end
// REGISTER/CYCLE 2-7
jt12_sh #( .width(10), .stages(NUM_VOICES)) phasemod_sh(
.clk ( clk ),
.din ( phasemod_II ),
.drop ( phasemod_VIII )
);
//generate
// if( num_ch==6 )
jt12_sh #( .width(10), .stages(6)) phasemod_sh(
.clk ( clk ),
.clk_en ( clk_en),
.din ( phasemod_II ),
.drop ( phasemod_VIII )
);
// else begin
// assign phasemod_VIII = phasemod_II;
// end
// endgenerate
// REGISTER/CYCLE 8
reg [ 9:0] phase;
reg [ 9:0] phase;
// Sets the maximum number of fanouts for a register or combinational
// cell. The Quartus II software will replicate the cell and split
// the fanouts among the duplicates until the fanout of each cell
// is below the maximum.
reg [ 7:0] phaselo_IX, aux_VIII;
reg [ 7:0] aux_VIII;
always @(*) begin
phase <= phasemod_VIII + pg_phase_VIII;
aux_VIII<= phase[7:0] ^ {8{~phase[8]}};
phase = phasemod_VIII + pg_phase_VIII;
aux_VIII= phase[7:0] ^ {8{~phase[8]}};
end
always @(posedge clk) begin
phaselo_IX <= aux_VIII;
signbit_IX <= phase[9];
always @(posedge clk) if( clk_en ) begin
signbit_IX <= phase[9];
end
wire [45:0] sta_IX;
wire [11:0] logsin_IX;
jt12_logsin u_logsin (
.clk ( clk ),
.clk_en ( clk_en ),
.addr ( aux_VIII[7:0] ),
.logsin ( logsin_IX )
);
jt12_phrom u_phrom(
.clk ( clk ),
.addr ( aux_VIII[5:1] ),
.ph ( sta_IX )
);
// REGISTER/CYCLE 9
// Sine table
// Main sine table body
always @(*) begin
//sta_IX <= sinetable[ phaselo_IX[5:1] ];
// 2-bit row chooser
case( phaselo_IX[7:6] )
2'b00: stb <= { 10'b0, sta_IX[29], sta_IX[25], 2'b0, sta_IX[18],
sta_IX[14], 1'b0, sta_IX[7] , sta_IX[3] };
2'b01: stb <= { 6'b0 , sta_IX[37], sta_IX[34], 2'b0, sta_IX[28],
sta_IX[24], 2'b0, sta_IX[17], sta_IX[13], sta_IX[10], sta_IX[6], sta_IX[2] };
2'b10: stb <= { 2'b0, sta_IX[43], sta_IX[41], 2'b0, sta_IX[36],
sta_IX[33], 2'b0, sta_IX[27], sta_IX[23], 1'b0, sta_IX[20],
sta_IX[16], sta_IX[12], sta_IX[9], sta_IX[5], sta_IX[1] };
default: stb <= {
sta_IX[45], sta_IX[44], sta_IX[42], sta_IX[40]
, sta_IX[39], sta_IX[38], sta_IX[35], sta_IX[32]
, sta_IX[31], sta_IX[30], sta_IX[26], sta_IX[22]
, sta_IX[21], sta_IX[19], sta_IX[15], sta_IX[11]
, sta_IX[8], sta_IX[4], sta_IX[0] };
endcase
// Fixed value to sum
stf <= { stb[18:15], stb[12:11], stb[8:7], stb[4:3], stb[0] };
// Gated value to sum; bit 14 is indeed used twice
if( phaselo_IX[0] )
stg <= { 2'b0, stb[14], stb[14:13], stb[10:9], stb[6:5], stb[2:1] };
else
stg <= 11'd0;
// Sum to produce final logsin value
logsin <= stf + stg; // Carry-out of 11-bit addition becomes 12th bit
// Invert-subtract logsin value from EG attenuation value, with inverted carry
// In the actual chip, the output of the above logsin sum is already inverted.
// The two LSBs go through inverters (so they're non-inverted); the eg_atten_IX signal goes through inverters.
// The adder is normal except the carry-in is 1. It's a 10-bit adder.
// The outputs are inverted outputs, including the carry bit.
//subtresult <= not (('0' & not eg_atten_IX) - ('1' & logsin([11:2])));
// After a little pencil-and-paper, turns out this is equivalent to a regular adder!
subtresult <= eg_atten_IX + logsin[11:2];
// Place all but carry bit into result; also two LSBs of logsin
// If addition overflowed, make it the largest value (saturate)
atten_internal_IX <= { subtresult[9:0], logsin[1:0] } | {12{subtresult[10]}};
subtresult = eg_atten_IX + logsin_IX[11:2];
atten_internal_IX = { subtresult[9:0], logsin_IX[1:0] } | {12{subtresult[10]}};
end
wire [44:0] exp_X;
wire [9:0] mantissa_X;
reg [9:0] mantissa_XI;
reg [3:0] exponent_X, exponent_XI;
jt12_exprom u_exprom(
.clk ( clk ),
.addr ( atten_internal_IX[5:1] ),
.exp ( exp_X )
.clk ( clk ),
.clk_en ( clk_en ),
.addr ( atten_internal_IX[7:0] ),
.exp ( mantissa_X )
);
always @(posedge clk) begin
totalatten_X <= atten_internal_IX;
signbit_X <= signbit_IX;
always @(posedge clk) if( clk_en ) begin
exponent_X <= atten_internal_IX[11:8];
signbit_X <= signbit_IX;
end
//wire [1:0] et_sel = totalatten_X[7:6];
//wire [4:0] et_fine = totalatten_X[5:1];
// REGISTER/CYCLE 10
// Exponential table
// Main sine table body
always @(*) begin
//eta <= explut_jt51[ totalatten_X[5:1] ];
// 2-bit row chooser
case( totalatten_X[7:6] )
2'b00: begin
etf <= { 1'b1, exp_X[44:36] };
etg <= { 1'b1, exp_X[35:34] };
end
2'b01: begin
etf <= exp_X[33:24];
etg <= { 2'b10, exp_X[23] };
end
2'b10: begin
etf <= { 1'b0, exp_X[22:14] };
etg <= exp_X[13:11];
end
2'b11: begin
etf <= { 2'b00, exp_X[10:3] };
etg <= exp_X[2:0];
end
endcase
end
always @(posedge clk) begin
//RESULT
mantissa_XI <= etf + ( totalatten_X[0] ? 3'd0 : etg ); //carry-out discarded
exponent_XI <= totalatten_X[11:8];
signbit_XI <= signbit_X;
always @(posedge clk) if( clk_en ) begin
mantissa_XI <= mantissa_X;
exponent_XI <= exponent_X;
signbit_XI <= signbit_X;
end
// REGISTER/CYCLE 11
// Introduce test bit as MSB, 2's complement & Carry-out discarded
always @(*) begin
// Floating-point to integer, and incorporating sign bit
// Two-stage shifting of mantissa_XI by exponent_XI
shifter <= { 3'b001, mantissa_XI };
case( ~exponent_XI[1:0] )
2'b00: shifter_2 <= { 1'b0, shifter[12:1] }; // LSB discarded
2'b01: shifter_2 <= shifter;
2'b10: shifter_2 <= { shifter[11:0], 1'b0 };
2'b11: shifter_2 <= { shifter[10:0], 2'b0 };
endcase
case( ~exponent_XI[3:2] )
2'b00: shifter_3 <= {12'b0, shifter_2[12] };
2'b01: shifter_3 <= { 8'b0, shifter_2[12:8] };
2'b10: shifter_3 <= { 4'b0, shifter_2[12:4] };
2'b11: shifter_3 <= shifter_2;
endcase
// Floating-point to integer, and incorporating sign bit
// Two-stage shifting of mantissa_XI by exponent_XI
shifter = { 3'b001, mantissa_XI };
case( ~exponent_XI[1:0] )
2'b00: shifter_2 = { 1'b0, shifter[12:1] }; // LSB discarded
2'b01: shifter_2 = shifter;
2'b10: shifter_2 = { shifter[11:0], 1'b0 };
2'b11: shifter_2 = { shifter[10:0], 2'b0 };
endcase
case( ~exponent_XI[3:2] )
2'b00: shifter_3 = {12'b0, shifter_2[12] };
2'b01: shifter_3 = { 8'b0, shifter_2[12:8] };
2'b10: shifter_3 = { 4'b0, shifter_2[12:4] };
2'b11: shifter_3 = shifter_2;
endcase
end
always @(posedge clk) begin
// REGISTER CYCLE 11
op_XII <= ({ test_214, shifter_3 } ^ {14{signbit_XI}}) + signbit_XI;
// REGISTER CYCLE 12
// Extra register, take output after here
always @(posedge clk) if( clk_en ) begin
// REGISTER CYCLE 11
op_XII <= ({ test_214, shifter_3 } ^ {14{signbit_XI}}) + {13'd0,signbit_XI};
// REGISTER CYCLE 12
// Extra register, take output after here
op_result_internal <= op_XII;
end
`ifdef SIMULATION
/* verilator lint_off PINMISSING */
reg [4:0] sep24_cnt;
wire signed [13:0] op_ch0s1, op_ch1s1, op_ch2s1, op_ch3s1,
op_ch4s1, op_ch5s1, op_ch0s2, op_ch1s2,
op_ch2s2, op_ch3s2, op_ch4s2, op_ch5s2,
op_ch0s3, op_ch1s3, op_ch2s3, op_ch3s3,
op_ch4s3, op_ch5s3, op_ch0s4, op_ch1s4,
op_ch2s4, op_ch3s4, op_ch4s4, op_ch5s4;
op_ch4s1, op_ch5s1, op_ch0s2, op_ch1s2,
op_ch2s2, op_ch3s2, op_ch4s2, op_ch5s2,
op_ch0s3, op_ch1s3, op_ch2s3, op_ch3s3,
op_ch4s3, op_ch5s3, op_ch0s4, op_ch1s4,
op_ch2s4, op_ch3s4, op_ch4s4, op_ch5s4;
always @(posedge clk )
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
always @(posedge clk ) if( clk_en ) begin
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
end
sep24 #( .width(14), .pos0(13)) opsep
(
.clk ( clk ),
.mixed ( op_result_internal ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (op_ch0s1),
.ch1s1 (op_ch1s1),
.ch2s1 (op_ch2s1),
.ch3s1 (op_ch3s1),
.ch4s1 (op_ch4s1),
.ch5s1 (op_ch5s1),
.clk ( clk ),
.clk_en ( clk_en ),
.mixed ( op_result_internal ),
.mask ( 24'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (op_ch0s1),
.ch1s1 (op_ch1s1),
.ch2s1 (op_ch2s1),
.ch3s1 (op_ch3s1),
.ch4s1 (op_ch4s1),
.ch5s1 (op_ch5s1),
.ch0s2 (op_ch0s2),
.ch1s2 (op_ch1s2),
.ch2s2 (op_ch2s2),
.ch3s2 (op_ch3s2),
.ch4s2 (op_ch4s2),
.ch5s2 (op_ch5s2),
.ch0s2 (op_ch0s2),
.ch1s2 (op_ch1s2),
.ch2s2 (op_ch2s2),
.ch3s2 (op_ch3s2),
.ch4s2 (op_ch4s2),
.ch5s2 (op_ch5s2),
.ch0s3 (op_ch0s3),
.ch1s3 (op_ch1s3),
.ch2s3 (op_ch2s3),
.ch3s3 (op_ch3s3),
.ch4s3 (op_ch4s3),
.ch5s3 (op_ch5s3),
.ch0s3 (op_ch0s3),
.ch1s3 (op_ch1s3),
.ch2s3 (op_ch2s3),
.ch3s3 (op_ch3s3),
.ch4s3 (op_ch4s3),
.ch5s3 (op_ch5s3),
.ch0s4 (op_ch0s4),
.ch1s4 (op_ch1s4),
.ch2s4 (op_ch2s4),
.ch3s4 (op_ch3s4),
.ch4s4 (op_ch4s4),
.ch5s4 (op_ch5s4)
.ch0s4 (op_ch0s4),
.ch1s4 (op_ch1s4),
.ch2s4 (op_ch2s4),
.ch3s4 (op_ch3s4),
.ch4s4 (op_ch4s4),
.ch5s4 (op_ch5s4)
);
wire signed [8:0] acc_ch0s1, acc_ch1s1, acc_ch2s1, acc_ch3s1,
acc_ch4s1, acc_ch5s1, acc_ch0s2, acc_ch1s2,
acc_ch2s2, acc_ch3s2, acc_ch4s2, acc_ch5s2,
acc_ch0s3, acc_ch1s3, acc_ch2s3, acc_ch3s3,
acc_ch4s3, acc_ch5s3, acc_ch0s4, acc_ch1s4,
acc_ch2s4, acc_ch3s4, acc_ch4s4, acc_ch5s4;
acc_ch4s1, acc_ch5s1, acc_ch0s2, acc_ch1s2,
acc_ch2s2, acc_ch3s2, acc_ch4s2, acc_ch5s2,
acc_ch0s3, acc_ch1s3, acc_ch2s3, acc_ch3s3,
acc_ch4s3, acc_ch5s3, acc_ch0s4, acc_ch1s4,
acc_ch2s4, acc_ch3s4, acc_ch4s4, acc_ch5s4;
sep24 #( .width(9), .pos0(13)) accsep
(
.clk ( clk ),
.mixed ( op_result_internal[13:5] ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (acc_ch0s1),
.ch1s1 (acc_ch1s1),
.ch2s1 (acc_ch2s1),
.ch3s1 (acc_ch3s1),
.ch4s1 (acc_ch4s1),
.ch5s1 (acc_ch5s1),
.clk ( clk ),
.clk_en ( clk_en ),
.mixed ( op_result_internal[13:5] ),
.mask ( 24'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (acc_ch0s1),
.ch1s1 (acc_ch1s1),
.ch2s1 (acc_ch2s1),
.ch3s1 (acc_ch3s1),
.ch4s1 (acc_ch4s1),
.ch5s1 (acc_ch5s1),
.ch0s2 (acc_ch0s2),
.ch1s2 (acc_ch1s2),
.ch2s2 (acc_ch2s2),
.ch3s2 (acc_ch3s2),
.ch4s2 (acc_ch4s2),
.ch5s2 (acc_ch5s2),
.ch0s2 (acc_ch0s2),
.ch1s2 (acc_ch1s2),
.ch2s2 (acc_ch2s2),
.ch3s2 (acc_ch3s2),
.ch4s2 (acc_ch4s2),
.ch5s2 (acc_ch5s2),
.ch0s3 (acc_ch0s3),
.ch1s3 (acc_ch1s3),
.ch2s3 (acc_ch2s3),
.ch3s3 (acc_ch3s3),
.ch4s3 (acc_ch4s3),
.ch5s3 (acc_ch5s3),
.ch0s3 (acc_ch0s3),
.ch1s3 (acc_ch1s3),
.ch2s3 (acc_ch2s3),
.ch3s3 (acc_ch3s3),
.ch4s3 (acc_ch4s3),
.ch5s3 (acc_ch5s3),
.ch0s4 (acc_ch0s4),
.ch1s4 (acc_ch1s4),
.ch2s4 (acc_ch2s4),
.ch3s4 (acc_ch3s4),
.ch4s4 (acc_ch4s4),
.ch5s4 (acc_ch5s4)
.ch0s4 (acc_ch0s4),
.ch1s4 (acc_ch1s4),
.ch2s4 (acc_ch2s4),
.ch3s4 (acc_ch3s4),
.ch4s4 (acc_ch4s4),
.ch5s4 (acc_ch5s4)
);
wire signed [9:0] pm_ch0s1, pm_ch1s1, pm_ch2s1, pm_ch3s1,
pm_ch4s1, pm_ch5s1, pm_ch0s2, pm_ch1s2,
pm_ch2s2, pm_ch3s2, pm_ch4s2, pm_ch5s2,
pm_ch0s3, pm_ch1s3, pm_ch2s3, pm_ch3s3,
pm_ch4s3, pm_ch5s3, pm_ch0s4, pm_ch1s4,
pm_ch2s4, pm_ch3s4, pm_ch4s4, pm_ch5s4;
pm_ch4s1, pm_ch5s1, pm_ch0s2, pm_ch1s2,
pm_ch2s2, pm_ch3s2, pm_ch4s2, pm_ch5s2,
pm_ch0s3, pm_ch1s3, pm_ch2s3, pm_ch3s3,
pm_ch4s3, pm_ch5s3, pm_ch0s4, pm_ch1s4,
pm_ch2s4, pm_ch3s4, pm_ch4s4, pm_ch5s4;
sep24 #( .width(10), .pos0( 18 ) ) pmsep
(
.clk ( clk ),
.mixed ( phasemod_VIII ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (pm_ch0s1),
.ch1s1 (pm_ch1s1),
.ch2s1 (pm_ch2s1),
.ch3s1 (pm_ch3s1),
.ch4s1 (pm_ch4s1),
.ch5s1 (pm_ch5s1),
.clk ( clk ),
.clk_en ( clk_en ),
.mixed ( phasemod_VIII ),
.mask ( 24'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (pm_ch0s1),
.ch1s1 (pm_ch1s1),
.ch2s1 (pm_ch2s1),
.ch3s1 (pm_ch3s1),
.ch4s1 (pm_ch4s1),
.ch5s1 (pm_ch5s1),
.ch0s2 (pm_ch0s2),
.ch1s2 (pm_ch1s2),
.ch2s2 (pm_ch2s2),
.ch3s2 (pm_ch3s2),
.ch4s2 (pm_ch4s2),
.ch5s2 (pm_ch5s2),
.ch0s2 (pm_ch0s2),
.ch1s2 (pm_ch1s2),
.ch2s2 (pm_ch2s2),
.ch3s2 (pm_ch3s2),
.ch4s2 (pm_ch4s2),
.ch5s2 (pm_ch5s2),
.ch0s3 (pm_ch0s3),
.ch1s3 (pm_ch1s3),
.ch2s3 (pm_ch2s3),
.ch3s3 (pm_ch3s3),
.ch4s3 (pm_ch4s3),
.ch5s3 (pm_ch5s3),
.ch0s3 (pm_ch0s3),
.ch1s3 (pm_ch1s3),
.ch2s3 (pm_ch2s3),
.ch3s3 (pm_ch3s3),
.ch4s3 (pm_ch4s3),
.ch5s3 (pm_ch5s3),
.ch0s4 (pm_ch0s4),
.ch1s4 (pm_ch1s4),
.ch2s4 (pm_ch2s4),
.ch3s4 (pm_ch3s4),
.ch4s4 (pm_ch4s4),
.ch5s4 (pm_ch5s4)
.ch0s4 (pm_ch0s4),
.ch1s4 (pm_ch1s4),
.ch2s4 (pm_ch2s4),
.ch3s4 (pm_ch3s4),
.ch4s4 (pm_ch4s4),
.ch5s4 (pm_ch5s4)
);
wire [9:0] phase_ch0s1, phase_ch1s1, phase_ch2s1, phase_ch3s1,
phase_ch4s1, phase_ch5s1, phase_ch0s2, phase_ch1s2,
phase_ch2s2, phase_ch3s2, phase_ch4s2, phase_ch5s2,
phase_ch0s3, phase_ch1s3, phase_ch2s3, phase_ch3s3,
phase_ch4s3, phase_ch5s3, phase_ch0s4, phase_ch1s4,
phase_ch2s4, phase_ch3s4, phase_ch4s4, phase_ch5s4;
phase_ch4s1, phase_ch5s1, phase_ch0s2, phase_ch1s2,
phase_ch2s2, phase_ch3s2, phase_ch4s2, phase_ch5s2,
phase_ch0s3, phase_ch1s3, phase_ch2s3, phase_ch3s3,
phase_ch4s3, phase_ch5s3, phase_ch0s4, phase_ch1s4,
phase_ch2s4, phase_ch3s4, phase_ch4s4, phase_ch5s4;
sep24 #( .width(10), .pos0( 18 ) ) phsep
(
.clk ( clk ),
.mixed ( phase ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (phase_ch0s1),
.ch1s1 (phase_ch1s1),
.ch2s1 (phase_ch2s1),
.ch3s1 (phase_ch3s1),
.ch4s1 (phase_ch4s1),
.ch5s1 (phase_ch5s1),
.clk ( clk ),
.clk_en ( clk_en ),
.mixed ( phase ),
.mask ( 24'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (phase_ch0s1),
.ch1s1 (phase_ch1s1),
.ch2s1 (phase_ch2s1),
.ch3s1 (phase_ch3s1),
.ch4s1 (phase_ch4s1),
.ch5s1 (phase_ch5s1),
.ch0s2 (phase_ch0s2),
.ch1s2 (phase_ch1s2),
.ch2s2 (phase_ch2s2),
.ch3s2 (phase_ch3s2),
.ch4s2 (phase_ch4s2),
.ch5s2 (phase_ch5s2),
.ch0s2 (phase_ch0s2),
.ch1s2 (phase_ch1s2),
.ch2s2 (phase_ch2s2),
.ch3s2 (phase_ch3s2),
.ch4s2 (phase_ch4s2),
.ch5s2 (phase_ch5s2),
.ch0s3 (phase_ch0s3),
.ch1s3 (phase_ch1s3),
.ch2s3 (phase_ch2s3),
.ch3s3 (phase_ch3s3),
.ch4s3 (phase_ch4s3),
.ch5s3 (phase_ch5s3),
.ch0s3 (phase_ch0s3),
.ch1s3 (phase_ch1s3),
.ch2s3 (phase_ch2s3),
.ch3s3 (phase_ch3s3),
.ch4s3 (phase_ch4s3),
.ch5s3 (phase_ch5s3),
.ch0s4 (phase_ch0s4),
.ch1s4 (phase_ch1s4),
.ch2s4 (phase_ch2s4),
.ch3s4 (phase_ch3s4),
.ch4s4 (phase_ch4s4),
.ch5s4 (phase_ch5s4)
.ch0s4 (phase_ch0s4),
.ch1s4 (phase_ch1s4),
.ch2s4 (phase_ch2s4),
.ch3s4 (phase_ch3s4),
.ch4s4 (phase_ch4s4),
.ch5s4 (phase_ch5s4)
);
wire [9:0] eg_ch0s1, eg_ch1s1, eg_ch2s1, eg_ch3s1, eg_ch4s1, eg_ch5s1,
eg_ch0s2, eg_ch1s2, eg_ch2s2, eg_ch3s2, eg_ch4s2, eg_ch5s2,
eg_ch0s3, eg_ch1s3, eg_ch2s3, eg_ch3s3, eg_ch4s3, eg_ch5s3,
eg_ch0s4, eg_ch1s4, eg_ch2s4, eg_ch3s4, eg_ch4s4, eg_ch5s4;
eg_ch0s2, eg_ch1s2, eg_ch2s2, eg_ch3s2, eg_ch4s2, eg_ch5s2,
eg_ch0s3, eg_ch1s3, eg_ch2s3, eg_ch3s3, eg_ch4s3, eg_ch5s3,
eg_ch0s4, eg_ch1s4, eg_ch2s4, eg_ch3s4, eg_ch4s4, eg_ch5s4;
sep24 #( .width(10), .pos0(17) ) egsep
(
.clk ( clk ),
.mixed ( eg_atten_IX ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (eg_ch0s1),
.ch1s1 (eg_ch1s1),
.ch2s1 (eg_ch2s1),
.ch3s1 (eg_ch3s1),
.ch4s1 (eg_ch4s1),
.ch5s1 (eg_ch5s1),
.clk ( clk ),
.clk_en ( clk_en ),
.mixed ( eg_atten_IX ),
.mask ( 24'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (eg_ch0s1),
.ch1s1 (eg_ch1s1),
.ch2s1 (eg_ch2s1),
.ch3s1 (eg_ch3s1),
.ch4s1 (eg_ch4s1),
.ch5s1 (eg_ch5s1),
.ch0s2 (eg_ch0s2),
.ch1s2 (eg_ch1s2),
.ch2s2 (eg_ch2s2),
.ch3s2 (eg_ch3s2),
.ch4s2 (eg_ch4s2),
.ch5s2 (eg_ch5s2),
.ch0s2 (eg_ch0s2),
.ch1s2 (eg_ch1s2),
.ch2s2 (eg_ch2s2),
.ch3s2 (eg_ch3s2),
.ch4s2 (eg_ch4s2),
.ch5s2 (eg_ch5s2),
.ch0s3 (eg_ch0s3),
.ch1s3 (eg_ch1s3),
.ch2s3 (eg_ch2s3),
.ch3s3 (eg_ch3s3),
.ch4s3 (eg_ch4s3),
.ch5s3 (eg_ch5s3),
.ch0s3 (eg_ch0s3),
.ch1s3 (eg_ch1s3),
.ch2s3 (eg_ch2s3),
.ch3s3 (eg_ch3s3),
.ch4s3 (eg_ch4s3),
.ch5s3 (eg_ch5s3),
.ch0s4 (eg_ch0s4),
.ch1s4 (eg_ch1s4),
.ch2s4 (eg_ch2s4),
.ch3s4 (eg_ch3s4),
.ch4s4 (eg_ch4s4),
.ch5s4 (eg_ch5s4)
.ch0s4 (eg_ch0s4),
.ch1s4 (eg_ch1s4),
.ch2s4 (eg_ch2s4),
.ch3s4 (eg_ch3s4),
.ch4s4 (eg_ch4s4),
.ch5s4 (eg_ch5s4)
);
/* verilator lint_on PINMISSING */
`endif