Update DMA and SPI to latest versions.

This commit is contained in:
sorgelig
2018-08-22 06:03:52 +08:00
parent cd481c8528
commit 76ca22dbbc
4 changed files with 302 additions and 342 deletions

View File

@ -89,7 +89,6 @@ module arbiter(
input wire [23:0] dma_addr,
input wire [15:0] dma_wrdata,
input wire dma_req,
input wire dma_z80_lp,
input wire dma_rnw,
output wire dma_next,

View File

@ -3,308 +3,335 @@
// to do
// - probably add the extra 8 bit counter for number of bursts
module dma (
// clocks
module dma
(
// clocks
input wire clk,
input wire c2,
input wire reset,
// interface
// interface
input wire [8:0] dmaport_wr,
output wire dma_act,
output reg [15:0] data,
output wire [ 7:0] wraddr,
output wire int_start,
// Z80
// Z80
input wire [7:0] zdata,
// DRAM interface
// DRAM interface
output wire [20:0] dram_addr,
input wire [15:0] dram_rddata,
output wire [15:0] dram_wrdata,
output wire dram_req,
output reg dma_z80_lp,
output wire dram_rnw,
input wire dram_next,
output wire dram_req,
output wire dram_rnw,
input wire dram_next,
// SPI interface
input wire [7:0] spi_rddata,
output wire [7:0] spi_wrdata,
output wire spi_req,
input wire spi_stb,
input wire spi_start,
// SPI interface
input wire [7:0] spi_rddata,
output wire [7:0] spi_wrdata,
output wire spi_req,
input wire spi_stb,
// IDE interface
// IDE interface
input wire [15:0] ide_in,
output wire [15:0] ide_out,
output wire ide_req,
output wire ide_rnw,
input wire ide_stb,
output wire ide_req,
output wire ide_rnw,
input wire ide_stb,
// CRAM interface
output wire cram_we,
// CRAM interface
output wire cram_we,
// SFILE interface
output wire sfile_we,
//---------------------
output wire [3:0] TST
// SFILE interface
output wire sfile_we
);
assign TST[0] = dma_act;
assign TST[1] = dma_len;
assign TST[2] = b_len[7];
assign TST[3] = b_ctr[7];
// mode:
// 0 - device to RAM (read from device)
// 1 - RAM to device (write to device)
assign wraddr = d_addr[7:0];
// wire [8:0] dma_wr = dmaport_wr & {9{!dma_act}}; // blocking of DMA regs write strobes while DMA active
wire [8:0] dma_wr = dmaport_wr;
assign wraddr = d_addr[7:0];
wire dma_saddrl = dma_wr[0];
wire dma_saddrh = dma_wr[1];
wire dma_saddrx = dma_wr[2];
wire dma_daddrl = dma_wr[3];
wire dma_daddrh = dma_wr[4];
wire dma_daddrx = dma_wr[5];
wire dma_len = dma_wr[6];
wire dma_launch = dma_wr[7];
wire dma_num = dma_wr[8];
wire dma_saddrl = dmaport_wr[0];
wire dma_saddrh = dmaport_wr[1];
wire dma_saddrx = dmaport_wr[2];
wire dma_daddrl = dmaport_wr[3];
wire dma_daddrh = dmaport_wr[4];
wire dma_daddrx = dmaport_wr[5];
wire dma_len = dmaport_wr[6];
wire dma_launch = dmaport_wr[7];
wire dma_num = dmaport_wr[8];
// DRAM
assign dram_addr = state_rd ? ((!dv_blt || !phase_blt) ? s_addr : d_addr) : d_addr;
assign dram_wrdata = data;
assign dram_req = dma_act && state_mem;
assign dram_rnw = state_rd;
assign dram_addr = state_rd ? ((!dv_blt || !phase_blt) ? s_addr : d_addr) : d_addr;
assign dram_wrdata = data;
assign dram_req = dma_act && state_mem;
assign dram_rnw = state_rd;
// devices
wire [3:0] devsel = {dma_wnr, device};
wire dv_ram = (device == 3'b001) || (devsel == 4'b0100);
wire dv_blt = (devsel == 4'b1001);
wire dv_fil = (devsel == 4'b0100);
wire dv_spi = (device == 3'b010);
wire dv_ide = (device == 3'b011);
wire dv_crm = (devsel == 4'b1100);
wire dv_sfl = (devsel == 4'b1101);
localparam DEV_RAM = 3'b0001;
localparam DEV_BLT1 = 4'b1001;
localparam DEV_BLT2 = 4'b0110;
localparam DEV_FIL = 4'b0100;
localparam DEV_SPI = 3'b010;
localparam DEV_IDE = 3'b011;
localparam DEV_CRM = 4'b1100;
localparam DEV_SFL = 4'b1101;
localparam DEV_FDD = 4'b0101;
wire dev_req = dma_act && state_dev;
wire dev_stb = cram_we || sfile_we || ide_int_stb || (spi_int_stb && bsel);
wire [2:0] dev_bid = device[2:0]; // bidirectional
wire [3:0] dev_uni = device[3:0]; // unidirectional
wire dma_wnr = device[3]; // 0 - device to RAM / 1 - RAM to device
wire spi_int_stb = dv_spi && spi_stb;
wire spi_int_start = dv_spi && spi_start;
wire ide_int_stb = dv_ide && ide_stb;
assign cram_we = dev_req && dv_crm && state_wr;
assign sfile_we = dev_req && dv_sfl && state_wr;
wire dv_ram = (dev_uni == DEV_RAM) || (dev_uni == DEV_BLT1) || (dev_uni == DEV_BLT2) || (dev_uni == DEV_FIL);
wire dv_blt = (dev_uni == DEV_BLT1) || (dev_uni == DEV_BLT2);
wire dv_fil = (dev_uni == DEV_FIL);
wire dv_spi = (dev_bid == DEV_SPI);
wire dv_ide = (dev_bid == DEV_IDE);
wire dv_crm = (dev_uni == DEV_CRM);
wire dv_sfl = (dev_uni == DEV_SFL);
// SPI
assign spi_wrdata = {8{state_rd}} | (bsel ? data[15:8] : data[7:0]); // send FF on read cycles
assign spi_req = dev_req && dv_spi;
wire dev_req = dma_act && state_dev;
wire dev_stb = cram_we || sfile_we || ide_int_stb || (spi_int_stb && bsel && dma_act);
// IDE
assign ide_out = data;
assign ide_req = dev_req && dv_ide;
assign ide_rnw = state_rd;
assign cram_we = dev_req && dv_crm && state_wr;
assign sfile_we = dev_req && dv_sfl && state_wr;
// blitter
wire [15:0] blt_rddata = {blt_data_h, blt_data_l};
wire [7:0] blt_data_h = dma_asz ? blt_data32 : {blt_data3, blt_data2};
wire [7:0] blt_data_l = dma_asz ? blt_data10 : {blt_data1, blt_data0};
wire [7:0] blt_data32 = |data[15:8] ? data[15:8] : dram_rddata[15:8];
wire [7:0] blt_data10 = |data[7:0] ? data[7:0] : dram_rddata[7:0];
wire [3:0] blt_data3 = |data[15:12] ? data[15:12] : dram_rddata[15:12];
wire [3:0] blt_data2 = |data[11:8] ? data[11:8] : dram_rddata[11:8];
wire [3:0] blt_data1 = |data[7:4] ? data[7:4] : dram_rddata[7:4];
wire [3:0] blt_data0 = |data[3:0] ? data[3:0] : dram_rddata[3:0];
// SPI
wire spi_int_stb = dv_spi && spi_stb;
assign spi_wrdata = {8{state_rd}} | (bsel ? data[15:8] : data[7:0]); // send FF on read cycles
assign spi_req = dev_req && dv_spi;
// IDE
wire ide_int_stb = dv_ide && ide_stb;
assign ide_out = data;
assign ide_req = dev_req && dv_ide;
assign ide_rnw = state_rd;
// blitter
wire [15:0] blt_rddata = (dev_uni == DEV_BLT1) ? blt1_rddata : blt2_rddata;
// Mode 1
wire [15:0] blt1_rddata = {blt1_data_h, blt1_data_l};
wire [7:0] blt1_data_h = dma_asz ? blt1_data32 : {blt1_data3, blt1_data2};
wire [7:0] blt1_data_l = dma_asz ? blt1_data10 : {blt1_data1, blt1_data0};
wire [7:0] blt1_data32 = |data[15:8] ? data[15:8] : dram_rddata[15:8];
wire [7:0] blt1_data10 = |data[7:0] ? data[7:0] : dram_rddata[7:0];
wire [3:0] blt1_data3 = |data[15:12] ? data[15:12] : dram_rddata[15:12];
wire [3:0] blt1_data2 = |data[11:8] ? data[11:8] : dram_rddata[11:8];
wire [3:0] blt1_data1 = |data[7:4] ? data[7:4] : dram_rddata[7:4];
wire [3:0] blt1_data0 = |data[3:0] ? data[3:0] : dram_rddata[3:0];
// Mode 2
wire [15:0] blt2_rddata = {blt2_data_1, blt2_data_0};
wire [7:0] blt2_data_1 = dma_asz ? blt2_8_data1 : {blt2_4_data3, blt2_4_data2};
wire [7:0] blt2_data_0 = dma_asz ? blt2_8_data0 : {blt2_4_data1, blt2_4_data0};
localparam msk = 8'd255;
wire [8:0] sum80 = data[7:0] + dram_rddata[7:0];
wire [8:0] sum81 = data[15:8] + dram_rddata[15:8];
wire [4:0] sum40 = data[3:0] + dram_rddata[3:0];
wire [4:0] sum41 = data[7:4] + dram_rddata[7:4];
wire [4:0] sum42 = data[11:8] + dram_rddata[11:8];
wire [4:0] sum43 = data[15:12] + dram_rddata[15:12];
wire [7:0] blt2_8_data0 = ((sum80 > msk) && dma_opt) ? msk : sum80[7:0];
wire [7:0] blt2_8_data1 = ((sum81 > msk) && dma_opt) ? msk : sum81[7:0];
wire [3:0] blt2_4_data0 = ((sum40 > msk[3:0]) && dma_opt) ? msk[3:0] : sum40[3:0];
wire [3:0] blt2_4_data1 = ((sum41 > msk[3:0]) && dma_opt) ? msk[3:0] : sum41[3:0];
wire [3:0] blt2_4_data2 = ((sum42 > msk[3:0]) && dma_opt) ? msk[3:0] : sum42[3:0];
wire [3:0] blt2_4_data3 = ((sum43 > msk[3:0]) && dma_opt) ? msk[3:0] : sum43[3:0];
// data aquiring
always @(posedge clk)
if (state_rd)
begin
if (dram_next)
data <= (dv_blt && phase_blt) ? blt_rddata : dram_rddata;
always @(posedge clk)
if (state_rd)
begin
if (dram_next)
data <= (dv_blt && phase_blt) ? blt_rddata : dram_rddata;
if (ide_int_stb)
data <= ide_in;
if (ide_int_stb)
data <= ide_in;
if (spi_int_start) // data that is already read from SPI, just get it
begin
if (bsel)
data[15:8] <= spi_rddata;
else
data[7:0] <= spi_rddata;
end
end
if (spi_int_stb)
begin
if (bsel)
data[15:8] <= spi_rddata;
else
data[7:0] <= spi_rddata;
end
end
// states
wire state_rd = ~phase;
wire state_wr = phase;
wire state_dev = !dv_ram && (dma_wnr ^ !phase);
wire state_mem = dv_ram || (dma_wnr ^ phase);
wire state_rd = ~phase;
wire state_wr = phase;
wire state_dev = !dv_ram && (dma_wnr ^ !phase);
wire state_mem = dv_ram || (dma_wnr ^ phase);
// states processing
wire phase_end = phase_end_ram || phase_end_dev;
wire phase_end_ram = state_mem && dram_next && !blt_hook;
wire phase_end_dev = state_dev && dev_stb;
wire blt_hook = dv_blt && !phase_blt && !phase;
wire fil_hook = dv_fil && phase;
wire phase_blt_end = state_mem && dram_next && !phase;
wire phase_end = phase_end_ram || phase_end_dev;
wire phase_end_ram = state_mem && dram_next && !blt_hook;
wire phase_end_dev = state_dev && dev_stb;
wire blt_hook = dv_blt && !phase_blt && !phase;
wire fil_hook = dv_fil && phase;
wire phase_blt_end = state_mem && dram_next && !phase;
// blitter cycles:
// phase phase_blt blt_hook activity
// 0 0 1 read src
// 0 1 0 read dst
// 1 1 0 write dst
// blitter cycles:
// phase phase_blt blt_hook activity
// 0 0 1 read src
// 0 1 0 read dst
// 1 1 0 write dst
reg [2:0] device;
reg dma_wnr; // 0 - device to RAM / 1 - RAM to device
reg dma_salgn;
reg dma_dalgn;
reg dma_asz;
reg phase; // 0 - read / 1 - write
reg phase_blt; // 0 - source / 1 - destination
reg bsel; // 0 - lsb / 1 - msb
reg [3:0] device;
reg dma_salgn;
reg dma_dalgn;
reg dma_asz;
reg phase; // 0 - read / 1 - write
reg phase_blt; // 0 - source / 1 - destination
reg bsel; // 0 - lsb / 1 - msb
reg dma_opt;
always @(posedge clk)
if (dma_launch) // write to DMACtrl - launch of DMA burst
begin
dma_wnr <= zdata[7];
dma_z80_lp <= zdata[6];
dma_salgn <= zdata[5];
dma_dalgn <= zdata[4];
dma_asz <= zdata[3];
device <= zdata[2:0];
phase <= 1'b0;
phase_blt <= 1'b0;
bsel <= 1'b0;
end
always @(posedge clk)
if (dma_launch) // write to DMACtrl - launch of DMA burst
begin
dma_opt <= zdata[6];
dma_salgn <= zdata[5];
dma_dalgn <= zdata[4];
dma_asz <= zdata[3];
device <= {zdata[7], zdata[2:0]};
phase <= 1'b0;
phase_blt <= 1'b0;
bsel <= 1'b0;
end
else
begin
if (phase_end && !fil_hook)
phase <= ~phase;
if (phase_blt_end)
phase_blt <= ~phase_blt;
if (spi_int_stb)
bsel <= ~bsel;
end
else
begin
if (phase_end && !fil_hook)
phase <= ~phase;
if (phase_blt_end)
phase_blt <= ~phase_blt;
if (spi_int_stb)
bsel <= ~bsel;
end
// counter processing
reg [7:0] b_len; // length of burst
reg [7:0] b_num; // number of bursts
reg [7:0] b_ctr; // counter for cycles in burst
reg [8:0] n_ctr; // counter for bursts
reg [7:0] b_len; // length of burst
reg [7:0] b_num; // number of bursts
reg [8:0] n_ctr; // counter for bursts
wire [8:0] n_ctr_dec = n_ctr - next_burst;
assign dma_act = !n_ctr[8];
reg [7:0] b_ctr; // counter for cycles in burst
assign dma_act = ~n_ctr[8];
wire [7:0] b_ctr_next = next_burst ? b_len : b_ctr_dec[7:0];
wire [8:0] b_ctr_dec = {1'b0, b_ctr[7:0]} - 9'b1;
wire [8:0] n_ctr_dec = n_ctr - next_burst;
wire next_burst = b_ctr_dec[8];
wire [7:0] b_ctr_next = next_burst ? b_len : b_ctr_dec[7:0];
wire [8:0] b_ctr_dec = {1'b0, b_ctr[7:0]} - 9'b1;
wire next_burst = b_ctr_dec[8];
always @(posedge clk)
if (reset)
n_ctr[8] <= 1'b1; // disable DMA on RESET
always @(posedge clk)
if (reset)
n_ctr[8] <= 1'b1;
else
if (dma_launch) // launch of DMA burst
begin
b_ctr <= b_len;
n_ctr <= {1'b0, b_num};
end
else if (dma_launch)
begin
b_ctr <= b_len;
n_ctr <= {1'b0, b_num};
end
else if (phase && phase_end) // cycle processed
begin
b_ctr <= b_ctr_next;
n_ctr <= n_ctr_dec;
end
else if (phase && phase_end) // cycle processed
begin
b_ctr <= b_ctr_next;
n_ctr <= n_ctr_dec;
end
// loading of burst parameters
always @(posedge clk)
begin
if (dma_len)
b_len <= zdata;
always @(posedge clk)
begin
if (dma_len)
b_len <= zdata;
if (dma_num)
b_num <= zdata;
end
if (dma_num)
b_num <= zdata;
end
// address processing
// source
wire [20:0] s_addr_next = {s_addr_next_h[13:1], s_addr_next_m, s_addr_next_l[6:0]};
wire [13:0] s_addr_next_h = s_addr[20:7] + s_addr_add_h;
wire [1:0] s_addr_add_h = dma_salgn ? {next_burst && dma_asz, next_burst && !dma_asz} : {s_addr_inc_l[8], 1'b0};
wire s_addr_next_m = dma_salgn ? (dma_asz ? s_addr_next_l[7] : s_addr_next_h[0]) : s_addr_inc_l[7];
wire [7:0] s_addr_next_l = (dma_salgn && next_burst) ? s_addr_r : s_addr_inc_l[7:0];
wire [8:0] s_addr_inc_l = {1'b0, s_addr[7:0]} + 9'b1;
// source
wire [20:0] s_addr_next = {s_addr_next_h[13:1], s_addr_next_m, s_addr_next_l[6:0]};
wire [13:0] s_addr_next_h = s_addr[20:7] + s_addr_add_h;
wire [1:0] s_addr_add_h = dma_salgn ? {next_burst && dma_asz, next_burst && !dma_asz} : {s_addr_inc_l[8], 1'b0};
wire s_addr_next_m = dma_salgn ? (dma_asz ? s_addr_next_l[7] : s_addr_next_h[0]) : s_addr_inc_l[7];
wire [7:0] s_addr_next_l = (dma_salgn && next_burst) ? s_addr_r : s_addr_inc_l[7:0];
wire [8:0] s_addr_inc_l = {1'b0, s_addr[7:0]} + 9'b1;
reg [20:0] s_addr; // current source address
reg [7:0] s_addr_r; // source lower address
reg [20:0] s_addr; // current source address
reg [7:0] s_addr_r; // source lower address
always @(posedge clk)
if ((dram_next || dev_stb) && state_rd && (!dv_blt || !phase_blt)) // increment RAM source addr
s_addr <= s_addr_next;
always @(posedge clk)
if ((dram_next || dev_stb) && state_rd && (!dv_blt || !phase_blt)) // increment RAM source addr
s_addr <= s_addr_next;
else
begin
if (dma_saddrl)
begin
s_addr[6:0] <= zdata[7:1];
s_addr_r[6:0] <= zdata[7:1];
end
else
begin
if (dma_saddrl)
begin
s_addr[6:0] <= zdata[7:1];
s_addr_r[6:0] <= zdata[7:1];
end
if (dma_saddrh)
begin
s_addr[12:7] <= zdata[5:0];
s_addr_r[7] <= zdata[0];
end
if (dma_saddrh)
begin
s_addr[12:7] <= zdata[5:0];
s_addr_r[7] <= zdata[0];
end
if (dma_saddrx)
s_addr[20:13] <= zdata;
end
if (dma_saddrx)
s_addr[20:13] <= zdata;
end
// destination
wire [20:0] d_addr_next = {d_addr_next_h[13:1], d_addr_next_m, d_addr_next_l[6:0]};
wire [13:0] d_addr_next_h = d_addr[20:7] + d_addr_add_h;
wire [1:0] d_addr_add_h = dma_dalgn ? {next_burst && dma_asz, next_burst && !dma_asz} : {d_addr_inc_l[8], 1'b0};
wire d_addr_next_m = dma_dalgn ? (dma_asz ? d_addr_next_l[7] : d_addr_next_h[0]) : d_addr_inc_l[7];
wire [7:0] d_addr_next_l = (dma_dalgn && next_burst) ? d_addr_r : d_addr_inc_l[7:0];
wire [8:0] d_addr_inc_l = {1'b0, d_addr[7:0]} + 9'b1;
// destination
wire [20:0] d_addr_next = {d_addr_next_h[13:1], d_addr_next_m, d_addr_next_l[6:0]};
wire [13:0] d_addr_next_h = d_addr[20:7] + d_addr_add_h;
wire [1:0] d_addr_add_h = dma_dalgn ? {next_burst && dma_asz, next_burst && !dma_asz} : {d_addr_inc_l[8], 1'b0};
wire d_addr_next_m = dma_dalgn ? (dma_asz ? d_addr_next_l[7] : d_addr_next_h[0]) : d_addr_inc_l[7];
wire [7:0] d_addr_next_l = (dma_dalgn && next_burst) ? d_addr_r : d_addr_inc_l[7:0];
wire [8:0] d_addr_inc_l = {1'b0, d_addr[7:0]} + 9'b1;
reg [20:0] d_addr; // current dest address
reg [7:0] d_addr_r; // dest lower address
reg [20:0] d_addr; // current dest address
reg [7:0] d_addr_r; // dest lower address
always @(posedge clk)
if ((dram_next || dev_stb) && state_wr) // increment RAM dest addr
d_addr <= d_addr_next;
else
begin
if (dma_daddrl)
begin
d_addr[6:0] <= zdata[7:1];
d_addr_r[6:0] <= zdata[7:1];
end
always @(posedge clk)
if ((dram_next || dev_stb) && state_wr) // increment RAM dest addr
d_addr <= d_addr_next;
else
begin
if (dma_daddrl)
begin
d_addr[6:0] <= zdata[7:1];
d_addr_r[6:0] <= zdata[7:1];
end
if (dma_daddrh)
begin
d_addr[12:7] <= zdata[5:0];
d_addr_r[7] <= zdata[0];
end
if (dma_daddrh)
begin
d_addr[12:7] <= zdata[5:0];
d_addr_r[7] <= zdata[0];
end
if (dma_daddrx)
d_addr[20:13] <= zdata;
end
if (dma_daddrx)
d_addr[20:13] <= zdata;
end
// INT generation
reg dma_act_r;
always @(posedge clk)
dma_act_r <= dma_act;
// INT generation
reg dma_act_r;
always @(posedge clk)
dma_act_r <= dma_act && ~reset;
assign int_start = !dma_act && dma_act_r;
assign int_start = !dma_act && dma_act_r;
endmodule

137
src/spi.v
View File

@ -20,8 +20,6 @@
// data from sdi is latched by master on positive edge of sck, while slave changes it on falling edge.
// WARNING: slave must emit valid di7 bit BEFORE first pulse on sck!
//
// bsync is 1 while do7 is outting, otherwise it is 0
//
// start is synchronous pulse, which starts all transfer and also latches din data on the same clk edge
// as it is registered high. start can be given anytime (only when speed=0),
// so it is functioning then as synchronous reset. when speed!=0, there is global enable for majority of
@ -31,117 +29,60 @@
// latching last bit on sdi.
//
// sdo emits last bit shifted out after the transfer end
//
// when speed=0, data transfer rate could be as fast as one byte every 16 clk pulses. To achieve that,
// start must be pulsed high simultaneously with the last high pulse of sck
//
// speed[1:0] determines Fclk/Fspi
//
// speed | Fclk/Fspi
// ------+----------
// 2'b00 | 2
// 2'b01 | 4
// 2'b10 | 8
// 2'b11 | 16
//
// for speed=0 you can start new transfer as fast as every 16 clks
// for speed=1 - every 34 clks.
// alternatively, you can check rdy output: it goes to 0 after start pulse and when it goes back to 1, you can
// issue another start at the next clk cycle. See spi2_modelled.png and .zip (modelsim project)
//
// warning: if using rdy-driven transfers and speed=0, new transfer will be started every 18 clks.
// it is recommended to use rdy-driven transfers when speed!=0
//
// warning: this module does not contain asynchronous reset. Provided clk is stable, start=0
// and speed=0, module returns to initial ready state after maximum of 18+8=26 clks. To reset module
// to the known state from any operational state, set speed=0 and start=1 for 8 clks
// (that starts Fclk/Fspi=2 speed transfer for sure), then remain start=0, speed=0 for at least 18 clks.
module spi
(
// SPI wires
input wire clk, // system clk
output wire sck, // SPI bus pins...
output wire sdo, //
input wire sdi, //
// SPI wires
input clk, // system clock
output sck, // SCK
output reg sdo, // MOSI
input sdi, // MISO
// controls
output wire stb, // ready strobe, 1 clock length
output wire start, // start strobe, 1 clock length
output reg bsync, // for vs1001
// DMA interface
input dma_req,
input [7:0] dma_din,
// DMA interface
input wire dma_req,
input wire [7:0] dma_din,
// Z80 interface
input cpu_req,
input [7:0] cpu_din,
// Z80 interface
input wire cpu_req,
input wire [7:0] cpu_din,
output reg [7:0] dout,
// configuration
input wire [1:0] speed // =0 - sck full speed (1/2 of clk), =1 - half (1/4 of clk), =2 - one fourth (1/8 of clk), =3 - one eighth (1/16 of clk)
// output
output start, // start strobe, 1 clock length
output reg [7:0] dout
);
wire req = cpu_req || dma_req;
wire [7:0] din = dma_req ? dma_din : cpu_din;
// sdo is high bit of shiftout
assign sdo = shiftout[7];
wire ena_shout_load = (start || sck) & g_ena; // enable load of shiftout register
assign sck = counter[0];
wire rdy = counter[4]; // =0 when transmission in progress
assign stb = stb_r && !rdy;
assign start = req && rdy;
reg [6:0] shiftin; // shifting in data from sdi before emitting it on dout
reg [4:0] counter; // handles transmission
reg stb_r;
wire [7:0] din = dma_req ? dma_din : cpu_din;
wire rdy = counter[4]; // 0 - transmission in progress
wire req = cpu_req || dma_req;
reg [4:0] counter;
always @(posedge clk) begin
if (g_ena) begin
if (start) begin
counter <= 5'b0; // rdy = 0; sck = 0;
bsync <= 1'b1; // begin bsync pulse
stb_r <= 1'b0;
reg [7:0] shift;
if (start) begin
counter <= 5'b0;
sdo <= din[7];
shift[7:1] <= din[6:0];
end
else if (!rdy) begin
counter <= counter + 5'd1;
// shift in (rising edge of SCK)
if (!sck) begin
shift[0] <= sdi;
if (&counter[3:1]) dout <= {shift[7:1], sdi};
end
else begin
if (!sck) begin // on the rising edge of sck
shiftin[6:0] <= {shiftin[5:0], sdi};
if (&counter[3:1] && !rdy) begin
dout <= {shiftin[6:0], sdi}; // update dout at the last sck rising edge
stb_r <= 1'b1;
end
end
else begin // on the falling edge of sck
bsync <= 1'b0;
end
if (!rdy) counter <= counter + 5'd1;
// shift out (falling edge of sck)
if (sck) begin
sdo <= shift[7];
shift[7:1] <= shift[6:0]; // last bit remains after end of exchange
end
end
end
// shiftout treatment is done so just to save LCELLs in acex1k
reg [7:0] shiftout; // shifting out data to the sdo
always @(posedge clk) begin
if (ena_shout_load) begin
if (start) shiftout <= din;
else shiftout[7:0] <= {shiftout[6:0], shiftout[0]}; // last bit remains after end of exchange
end
end
// slow speeds - controlled by g_ena
reg [2:0] wcnt;
always @(posedge clk) begin
if (|speed) begin
if (start) wcnt <= 1;
else if (rdy) wcnt <= 0;
else wcnt <= wcnt + 1'd1;
end
else wcnt <= 0;
end
wire [3:0] g_en = {~|wcnt[2:0], ~|wcnt[1:0], ~|wcnt[0], 1'b1};
wire g_ena = g_en[speed];
endmodule

View File

@ -273,7 +273,6 @@ wire tm_next;
// DMA
wire dma_rnw;
wire dma_req;
wire dma_z80_lp;
wire [15:0] dma_wrdata;
wire [20:0] dma_addr;
wire dma_next;
@ -286,7 +285,6 @@ wire [15:0] dma_data;
wire [7:0] dma_wraddr;
wire int_start_dma;
// SPI
wire spi_stb;
wire spi_start;
wire dma_spi_req;
wire [7:0] dma_spi_din;
@ -529,7 +527,6 @@ arbiter TS07
.dma_addr({3'b000, dma_addr}),
.dma_wrdata(dma_wrdata),
.dma_req(dma_req),
.dma_z80_lp(dma_z80_lp),
.dma_rnw(dma_rnw),
.dma_next(dma_next),
.ts_addr({3'b000, ts_addr}),
@ -629,14 +626,12 @@ dma TS09
.dram_rddata(sdr_do_bus_16),
.dram_wrdata(dma_wrdata),
.dram_req(dma_req),
.dma_z80_lp(dma_z80_lp),
.dram_rnw(dma_rnw),
.dram_next(dma_next),
.spi_rddata(spi_dout),
.spi_wrdata(dma_spi_din),
.spi_req(dma_spi_req),
.spi_stb(spi_stb),
.spi_start(spi_start),
.spi_stb(spi_start),
.ide_in(0),
.ide_stb(0),
.cram_we(dma_cram_we),
@ -666,14 +661,12 @@ spi TS11
.sck(SD_CLK),
.sdo(SD_SI),
.sdi(SD_SO),
.stb(spi_stb),
.start(spi_start),
.dma_req(dma_spi_req),
.dma_din(dma_spi_din),
.cpu_req(cpu_spi_req),
.cpu_din(cpu_spi_din),
.dout(spi_dout),
.speed(0)
.start(spi_start),
.dout(spi_dout)
);
zint TS13