Replace Turbosound with Turbosound FM.

This commit is contained in:
sorgelig
2018-08-20 02:01:31 +08:00
parent 516714d724
commit 6288f40764
31 changed files with 5509 additions and 432 deletions

View File

@ -372,8 +372,10 @@ set_global_assignment -name VERILOG_FILE src/cpu/cache_addr.v
set_global_assignment -name VHDL_FILE src/rtc/CMOS.vhd
set_global_assignment -name VHDL_FILE src/rtc/mc146818a.vhd
set_global_assignment -name VHDL_FILE src/sound/soundrive.vhd
set_global_assignment -name VHDL_FILE src/sound/turbosound.vhd
set_global_assignment -name VHDL_FILE src/sound/ay8910.vhd
set_global_assignment -name QIP_FILE src/sound/jt12/jt12.qip
set_global_assignment -name SYSTEMVERILOG_FILE src/sound/ym2149.sv
set_global_assignment -name SYSTEMVERILOG_FILE src/sound/ym2203.sv
set_global_assignment -name SYSTEMVERILOG_FILE src/sound/turbosound.sv
set_global_assignment -name VERILOG_FILE src/sound/gs.v
set_global_assignment -name SYSTEMVERILOG_FILE src/sound/saa1099.sv
set_global_assignment -name VERILOG_FILE src/memory/dma.v

View File

@ -1,314 +0,0 @@
-------------------------------------------------------------------[07.09.2013]
-- AY3-8910
-------------------------------------------------------------------------------
-- V0.1 15.10.2011 <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity ay8910 is
port(
CLK : in std_logic; -- System Clock
ENA : in std_logic; -- PSG Clock
RESET : in std_logic; -- Chip Reset (set all Registers to '0', active hi)
BDIR : in std_logic; -- Bus Direction (0 - read , 1 - write)
CS : in std_logic; -- Chip Select (active hi)
BC : in std_logic; -- Bus control
DI : in std_logic_vector(7 downto 0); -- Data In
DO : out std_logic_vector(7 downto 0); -- Data Out
OUT_A : out std_logic_vector(7 downto 0); -- PSG Output channel A
OUT_B : out std_logic_vector(7 downto 0); -- PSG Output channel B
OUT_C : out std_logic_vector(7 downto 0) -- PSG Output channel C
);
end ay8910;
architecture rtl of ay8910 is
signal ClockDiv : unsigned (3 downto 0); -- Divide ENA
-- AY Registers
signal Period_A : std_logic_vector (11 downto 0); -- Channel A Tone Period (R1:R0)
signal Period_B : std_logic_vector (11 downto 0); -- Channel B Tone Period (R3:R2)
signal Period_C : std_logic_vector (11 downto 0); -- Channel C Tone Period (R5:R4)
signal Period_N : std_logic_vector (4 downto 0); -- Noise Period (R6)
signal Enable : std_logic_vector (7 downto 0); -- Enable (R7)
signal Volume_A : std_logic_vector (4 downto 0); -- Channel A Amplitude (R10)
signal Volume_B : std_logic_vector (4 downto 0); -- Channel B Amplitude (R11)
signal Volume_C : std_logic_vector (4 downto 0); -- Channel C Amplitude (R12)
signal Period_E : std_logic_vector (15 downto 0); -- Envelope Period (R14:R13)
signal Shape : std_logic_vector (3 downto 0); -- Envelope Shape/Cycle (R15)
-- signal Port_A : std_logic_vector (7 downto 0); -- I/O Port A Data Store (R16)
-- signal Port_B : std_logic_vector (7 downto 0); -- I/O Port B Data Store (R17)
--
signal Address : std_logic_vector (3 downto 0); -- Selected Register
alias Continue : std_logic is Shape(3); -- Envelope Control
alias Attack : std_logic is Shape(2);
alias Alternate : std_logic is Shape(1);
alias Hold : std_logic is Shape(0);
signal Reset_Req : std_logic; -- Envelope Reset Required
signal Reset_Ack : std_logic; -- Envelope Reset Acknoledge
signal Volume_E : std_logic_vector (3 downto 0); -- Envelope Volume
signal Freq_A : std_logic; -- Tone Generator A Output
signal Freq_B : std_logic; -- Tone Generator B Output
signal Freq_C : std_logic; -- Tone Generator C Output
signal Freq_N : std_logic; -- Noise Generator Output
function VolumeTable (value : std_logic_vector(3 downto 0)) return std_logic_vector is
variable result : std_logic_vector (7 downto 0);
begin
case value is -- Volume Table
when "1111" => result := "11111111";
when "1110" => result := "10110100";
when "1101" => result := "01111111";
when "1100" => result := "01011010";
when "1011" => result := "00111111";
when "1010" => result := "00101101";
when "1001" => result := "00011111";
when "1000" => result := "00010110";
when "0111" => result := "00001111";
when "0110" => result := "00001011";
when "0101" => result := "00000111";
when "0100" => result := "00000101";
when "0011" => result := "00000011";
when "0010" => result := "00000010";
when "0001" => result := "00000001";
when "0000" => result := "00000000";
when others => null;
end case;
return result;
end VolumeTable;
begin
-- Write to AY
process (RESET , CLK)
begin
if RESET = '1' then
Address <= "0000";
Period_A <= "000000000000";
Period_B <= "000000000000";
Period_C <= "000000000000";
Period_N <= "00000";
Enable <= "00000000";
Volume_A <= "00000";
Volume_B <= "00000";
Volume_C <= "00000";
Period_E <= "0000000000000000";
Shape <= "0000";
-- Port_A <= "00000000";
-- Port_B <= "00000000";
Reset_Req <= '0';
elsif rising_edge(CLK) then
if CS = '1' and BDIR = '1' then
if BC = '1' then
Address <= DI (3 downto 0); -- Latch Address
else
case Address is -- Latch Registers
when "0000" => Period_A (7 downto 0) <= DI;
when "0001" => Period_A (11 downto 8) <= DI (3 downto 0);
when "0010" => Period_B (7 downto 0) <= DI;
when "0011" => Period_B (11 downto 8) <= DI (3 downto 0);
when "0100" => Period_C (7 downto 0) <= DI;
when "0101" => Period_C (11 downto 8) <= DI (3 downto 0);
when "0110" => Period_N <= DI (4 downto 0);
when "0111" => Enable <= DI;
when "1000" => Volume_A <= DI (4 downto 0);
when "1001" => Volume_B <= DI (4 downto 0);
when "1010" => Volume_C <= DI (4 downto 0);
when "1011" => Period_E (7 downto 0) <= DI;
when "1100" => Period_E (15 downto 8) <= DI;
when "1101" => Shape <= DI (3 downto 0);
Reset_Req <= not Reset_Ack; -- Reset Envelope Generator
-- when "1110" => Port_A <= DI;
-- when "1111" => Port_B <= DI;
when others => null;
end case;
end if;
end if;
end if;
end process;
-- Read from AY
DO <= Period_A (7 downto 0) when Address = "0000" and CS = '1' else
"0000" & Period_A (11 downto 8) when Address = "0001" and CS = '1' else
Period_B (7 downto 0) when Address = "0010" and CS = '1' else
"0000" & Period_B (11 downto 8) when Address = "0011" and CS = '1' else
Period_C (7 downto 0) when Address = "0100" and CS = '1' else
"0000" & Period_C (11 downto 8) when Address = "0101" and CS = '1' else
"000" & Period_N when Address = "0110" and CS = '1' else
Enable when Address = "0111" and CS = '1' else
"000" & Volume_A when Address = "1000" and CS = '1' else
"000" & Volume_B when Address = "1001" and CS = '1' else
"000" & Volume_C when Address = "1010" and CS = '1' else
Period_E (7 downto 0) when Address = "1011" and CS = '1' else
Period_E (15 downto 8) when Address = "1100" and CS = '1' else
"0000" & Shape when Address = "1101" and CS = '1' else
"11111111";
-- Divide ENA
process (RESET, CLK)
begin
if RESET = '1' then
ClockDiv <= "0000";
elsif rising_edge(CLK) then
if ENA = '1' then
ClockDiv <= ClockDiv - 1;
end if;
end if;
end process;
-- Tone Generator
process (RESET, CLK)
variable Counter_A : unsigned (11 downto 0);
variable Counter_B : unsigned (11 downto 0);
variable Counter_C : unsigned (11 downto 0);
begin
if RESET = '1' then
Counter_A := "000000000000";
Counter_B := "000000000000";
Counter_C := "000000000000";
Freq_A <= '0';
Freq_B <= '0';
Freq_C <= '0';
elsif rising_edge(CLK) then
if ClockDiv(2 downto 0) = "000" and ENA = '1' then
-- Channel A Counter
if (Counter_A /= X"000") then
Counter_A := Counter_A - 1;
elsif (Period_A /= X"000") then
Counter_A := unsigned(Period_A) - 1;
end if;
if (Counter_A = X"000") then
Freq_A <= not Freq_A;
end if;
-- Channel B Counter
if (Counter_B /= X"000") then
Counter_B := Counter_B - 1;
elsif (Period_B /= X"000") then
Counter_B := unsigned(Period_B) - 1;
end if;
if (Counter_B = X"000") then
Freq_B <= not Freq_B;
end if;
-- Channel C Counter
if (Counter_C /= X"000") then
Counter_C := Counter_C - 1;
elsif (Period_C /= X"000") then
Counter_C := unsigned(Period_C) - 1;
end if;
if (Counter_C = X"000") then
Freq_C <= not Freq_C;
end if;
end if;
end if;
end process;
-- Noise Generator
process (RESET, CLK)
variable NoiseShift : unsigned (16 downto 0);
variable Counter_N : unsigned (4 downto 0);
begin
if RESET = '1' then
Counter_N := "00000";
NoiseShift := "00000000000000001";
elsif rising_edge(CLK) then
if ClockDiv(2 downto 0) = "000" and ENA = '1' then
if (Counter_N /= "00000") then
Counter_N := Counter_N - 1;
elsif (Period_N /= "00000") then
Counter_N := unsigned(Period_N) - 1;
end if;
if Counter_N = "00000" then
NoiseShift := (NoiseShift(0) xor NoiseShift(2)) & NoiseShift(16 downto 1);
end if;
Freq_N <= NoiseShift(0);
end if;
end if;
end process;
-- Envelope Generator
process (RESET , CLK)
variable EnvCounter : unsigned(15 downto 0);
variable EnvWave : unsigned(4 downto 0);
begin
if RESET = '1' then
EnvCounter := "0000000000000000";
EnvWave := "11111";
Volume_E <= "0000";
Reset_Ack <= '0';
elsif rising_edge(CLK) then
if ClockDiv = "0000" and ENA = '1' then
-- Envelope Period Counter
if (EnvCounter /= X"0000" and Reset_Req = Reset_Ack) then
EnvCounter := EnvCounter - 1;
elsif (Period_E /= X"0000") then
EnvCounter := unsigned(Period_E) - 1;
end if;
-- Envelope Phase Counter
if (Reset_Req /= Reset_Ack) then
EnvWave := (others => '1');
elsif (EnvCounter = X"0000" and (EnvWave(4) = '1' or (Hold = '0' and Continue = '1'))) then
EnvWave := EnvWave - 1;
end if;
-- Envelope Amplitude Counter
for I in 3 downto 0 loop
if (EnvWave(4) = '0' and Continue = '0') then
Volume_E(I) <= '0';
elsif (EnvWave(4) = '1' or (Alternate xor Hold) = '0') then
Volume_E(I) <= EnvWave(I) xor Attack;
else
Volume_E(I) <= EnvWave(I) xor Attack xor '1';
end if;
end loop;
Reset_Ack <= Reset_Req;
end if;
end if;
end process;
-- Mixer
process (RESET , CLK)
begin
if RESET = '1' then
OUT_A <= "00000000";
OUT_B <= "00000000";
OUT_C <= "00000000";
elsif rising_edge(CLK) then
if ENA = '1' then
if (((Enable(0) or Freq_A) and (Enable(3) or Freq_N)) = '0') then
OUT_A <= "00000000";
elsif (Volume_A(4) = '0') then
OUT_A <= VolumeTable(Volume_A(3 downto 0));
else
OUT_A <= VolumeTable(Volume_E);
end if;
if (((Enable(1) or Freq_B) and (Enable(4) or Freq_N)) = '0') then
OUT_B <= "00000000";
elsif (Volume_B(4) = '0') then
OUT_B <= VolumeTable(Volume_B(3 downto 0));
else
OUT_B <= VolumeTable(Volume_E);
end if;
if (((Enable(2) or Freq_C) and (Enable(5) or Freq_N)) = '0') then
OUT_C <= "00000000";
elsif (Volume_C(4) = '0') then
OUT_C <= VolumeTable(Volume_C(3 downto 0));
else
OUT_C <= VolumeTable(Volume_E);
end if;
end if;
end if;
end process;
end rtl;

21
src/sound/jt12/jt12.qip Normal file
View File

@ -0,0 +1,21 @@
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_acc.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_clksync.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_eg.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_exprom.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_kon.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_lfo.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_limitamp.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_mmr.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_mod.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_op.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_opram.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_pg.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_phrom.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_reg.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_sh.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_sh_rst.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_sh24.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_sumch.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_syn.v
set_global_assignment -name VERILOG_FILE src/sound/jt12/jt12_timers.v

116
src/sound/jt12/jt12.v Normal file
View File

@ -0,0 +1,116 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on information provided by
Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Nemesis reports, based on measurements
Comparisons with real hardware lent by Mikes (Va de retro)
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 1-4-2017
Use tab = 4 spaces
*/
// syn_clk "1.285714"
module jt12(
input rst,
// CPU interface
input cpu_clk,
input [7:0] cpu_din,
input [1:0] cpu_addr,
input cpu_cs_n,
input cpu_wr_n,
input cpu_limiter_en,
output [7:0] cpu_dout,
output cpu_irq_n,
// Synthesizer clock domain
input syn_clk,
// combined output
output signed [11:0] syn_snd_right,
output signed [11:0] syn_snd_left,
output syn_snd_sample,
// multiplexed output
output signed [8:0] syn_mux_right,
output signed [8:0] syn_mux_left,
output syn_mux_sample
);
// Timers
wire syn_flag_A, syn_flag_B;
wire [7:0] syn_din;
wire [1:0] syn_addr;
wire syn_write, syn_limiter_en, syn_busy;
wire syn_rst, syn_irq_n;
jt12_clksync u_clksync(
.rst ( rst ),
.cpu_clk ( cpu_clk ),
.syn_clk ( syn_clk ),
// CPU interface
.cpu_din ( cpu_din ),
.cpu_addr ( cpu_addr ),
.cpu_dout ( cpu_dout ),
.cpu_cs_n ( cpu_cs_n ),
.cpu_wr_n ( cpu_wr_n ),
.cpu_irq_n ( cpu_irq_n ),
.cpu_limiter_en( cpu_limiter_en ),
// Synthesizer interface
.syn_rst ( syn_rst ),
.syn_write ( syn_write ),
.syn_din ( syn_din ),
.syn_addr ( syn_addr ),
.syn_limiter_en( syn_limiter_en ),
.syn_busy ( syn_busy ),
.syn_flag_A ( syn_flag_A),
.syn_flag_B ( syn_flag_B),
.syn_irq_n ( syn_irq_n )
);
jt12_syn u_syn(
.rst ( syn_rst ),
.clk ( syn_clk ),
.din ( syn_din ),
.addr ( syn_addr ),
.busy ( syn_busy ),
.flag_A ( syn_flag_A),
.flag_B ( syn_flag_B),
.write ( syn_write ),
.limiter_en ( syn_limiter_en),
.irq_n ( syn_irq_n ),
// Mixed sound
.snd_right ( syn_snd_right ),
.snd_left ( syn_snd_left ),
.snd_sample ( syn_snd_sample),
// Multiplexed sound
.mux_right ( syn_mux_right ),
.mux_left ( syn_mux_left ),
.mux_sample ( syn_mux_sample)
);
endmodule

178
src/sound/jt12/jt12_acc.v Normal file
View File

@ -0,0 +1,178 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
Each channel can use the full range of the DAC as they do not
get summed in the real chip.
*/
`timescale 1ns / 1ps
module jt12_acc
(
input rst,
input clk,
input signed [8:0] op_result,
input [ 1:0] rl,
input limiter_en, // enables the limiter on
// the accumulator to prevent overfow.
// I reckon that:
// YM2612 had a limiter
// YM3438 did not
// note that the order changes to deal
// with the operator pipeline delay
input s1_enters,
input s2_enters,
input s3_enters,
input s4_enters,
input ch6op,
input [2:0] alg,
input pcm_en, // only enabled for channel 6
input [8:0] pcm,
// combined output
output reg signed [11:0] left,
output reg signed [11:0] right,
output sample,
// multiplexed output
output reg signed [8:0] mux_left,
output reg signed [8:0] mux_right,
output reg mux_sample
);
reg signed [11:0] pre_left, pre_right;
wire signed [8:0] total;
reg sum_en;
always @(*) begin
case ( alg )
default: sum_en <= s4_enters;
3'd4: sum_en <= s2_enters | s4_enters;
3'd5,3'd6: sum_en <= ~s1_enters;
3'd7: sum_en <= 1'b1;
endcase
end
reg sum_all;
assign sample = ~sum_all;
wire [8:0] buffer;
reg [8:0] buffer2;
reg [8:0] buf_mux;
reg [1:0] rl2,rl3;
reg last_s1;
reg [1:0] mux_cnt;
wire signed [11:0] total_signext = { {3{total[8]}}, total };
always @(posedge clk) begin : mux_dac_input
buffer2 <= buffer;
rl2 <= rl;
last_s1 <= s1_enters;
mux_cnt <= last_s1 && s3_enters ? 2'd01 : mux_cnt + 1'b1;
if( mux_cnt==2'b11 ) begin
if( s1_enters || s3_enters ) begin
buf_mux <= buffer2;
rl3 <= rl2;
end
else begin
buf_mux <= buffer;
rl3 <= rl;
end
end
if( mux_cnt==2'd0 ) begin
mux_left <= rl3[1] ? buf_mux : 9'd0;
mux_right<= rl3[0] ? buf_mux : 9'd0;
mux_sample <= 1'b1;
end
else
mux_sample <= 1'b0;
end
always @(posedge clk) begin
if( rst ) begin
sum_all <= 1'b0;
end
else begin
if( s3_enters ) begin
sum_all <= 1'b1;
if( !sum_all ) begin
pre_right <= rl[0] ? total_signext : 12'd0;
pre_left <= rl[1] ? total_signext : 12'd0;
end
else begin
pre_right <= pre_right + (rl[0] ? total_signext : 12'd0);
pre_left <= pre_left + (rl[1] ? total_signext : 12'd0);
end
end
if( s2_enters ) begin
sum_all <= 1'b0;
left <= pre_left;
right <= pre_right;
`ifdef DUMPSOUND
$strobe("%d\t%d", left, right);
`endif
end
end
end
reg signed [8:0] next, opsum, prev;
wire signed [9:0] opsum10 = next+total;
always @(*) begin
next <= sum_en ? op_result : 9'd0;
if( s3_enters )
opsum <= (ch6op && pcm_en) ? { ~pcm[8], pcm[7:0] } : next;
else begin
if( sum_en && !(ch6op && pcm_en) )
if( limiter_en ) begin
if( opsum10[9]==opsum10[8] )
opsum <= opsum10[8:0];
else begin
opsum <= opsum10[9] ? 9'h100 : 9'h0ff;
end
end
else begin
// MSB is discarded according to
// YM3438 application notes
opsum <= opsum10[8:0];
end
else
opsum <= total;
end
end
jt12_sh #(.width(9),.stages(6)) u_acc(
.clk ( clk ),
.din ( opsum ),
.drop ( total )
);
jt12_sh #(.width(9),.stages(6)) u_buffer(
.clk ( clk ),
.din ( s3_enters ? total : buffer ),
.drop ( buffer )
);
endmodule

View File

@ -0,0 +1,106 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2017
*/
module jt12_clksync(
input rst,
input cpu_clk,
input syn_clk,
// CPU interface
input [7:0] cpu_din,
input [1:0] cpu_addr,
output[7:0] cpu_dout,
input cpu_cs_n,
input cpu_wr_n,
output cpu_irq_n,
input cpu_limiter_en,
// Synthesizer interface
output reg [7:0] syn_din,
output reg [1:0] syn_addr,
output reg syn_rst,
output reg syn_write,
output syn_limiter_en,
input syn_busy,
input syn_flag_A,
input syn_flag_B,
input syn_irq_n
);
// reset generation
reg rst_aux;
assign syn_limiter_en = cpu_limiter_en;
always @(negedge syn_clk or posedge rst)
if( rst ) begin
syn_rst <= 1'b1;
rst_aux <= 1'b1;
end
else begin
syn_rst <= rst_aux;
rst_aux <= 1'b0;
end
reg cpu_busy;
wire cpu_flag_B, cpu_flag_A;
assign cpu_dout = cpu_cs_n ? 8'hFF : { cpu_busy, 5'h0, cpu_flag_B, cpu_flag_A };
wire write_raw = !cpu_cs_n && !cpu_wr_n;
reg [1:0]busy_sh;
always @(posedge cpu_clk) begin
busy_sh <= { busy_sh[0], syn_busy };
end
jt12_sh #(.width(3),.stages(2) ) u_syn2cpu(
.clk ( cpu_clk ),
.din ( { syn_flag_B, syn_flag_A, syn_irq_n } ),
.drop ( { cpu_flag_B, cpu_flag_A, cpu_irq_n } )
);
always @(posedge cpu_clk) begin
reg old_write;
old_write <= write_raw;
if( rst ) begin
cpu_busy <= 1'b0;
end
else begin
if( ~old_write & write_raw ) begin
cpu_busy <= 1;
syn_write <= ~syn_write;
syn_addr <= cpu_addr;
syn_din <= cpu_din;
end
if(cpu_busy && busy_sh==2'b10) cpu_busy <= 0;
end
end
endmodule

621
src/sound/jt12/jt12_eg.v Normal file
View File

@ -0,0 +1,621 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2017
The non SSG-EG section is basically that of JT51's jt51_envelope.v
adapted to 6 channels, instead of the eight.
The SSG-EG is based on the works of Nemesis, published on
http://gendev.spritesmind.net/forum/search.php?st=0&sk=t&sd=d&sr=posts&keywords=SSG-EG&t=386&sf=msgonly&ch=-1&start=15
This module tries to replicate exactly the original YM2612 waveforms.
Nonetheless, the verilog code is not a replica of the original circuit
as there is no reverse engineering description of it.
Questions:
-I latch the SSG enable bit on keyon. I have to do this in order to ignore the inversion bit before the keyon
-If SSG enable is set to 0 by software before issueing a keyoff it will be ignored
-However, the other SSG bits will have an effect if changed in the meantime between keyon and keyoff
-Was YM2612 like that?
*/
`timescale 1ns / 1ps
/*
tab size 4
*/
module jt12_eg (
`ifdef TEST_SUPPORT
input test_eg,
`endif
input rst,
input clk,
input zero,
input eg_stop,
// envelope configuration
input [4:0] keycode_III,
input [4:0] arate_II, // attack rate
input [4:0] rate1_II, // decay rate
input [4:0] rate2_II, // sustain rate
input [3:0] rrate_II, // release rate
input [3:0] d1l, // sustain level
input [1:0] ks_III, // key scale
// SSG operation
input ssg_en_II,
input [2:0] ssg_eg_II,
// envelope operation
input keyon_II,
// envelope number
input [6:0] am,
input [6:0] tl_VII,
input [1:0] ams_VII,
input amsen_VII,
output reg [9:0] eg_IX,
output reg pg_rst_III
);
// eg[9:6] -> direct attenuation (divide by 2)
// eg[5:0] -> mantisa attenuation (uses LUT)
// 1 LSB of eg is -0.09257 dB
wire ssg_inv_II = ssg_eg_II[2] & ssg_en_II;
wire ssg_alt_II = ssg_eg_II[1] & ssg_en_II;
wire ssg_hold_II = ssg_eg_II[0] & ssg_en_II;
parameter ATTACK=3'd0, DECAY1=3'd1, DECAY2=3'd2, RELEASE=3'd7, HOLD=3'd3;
reg [4:0] d1level_II;
reg [9:0] eg_III, eg_IV, eg_V;
wire [9:0] eg_II;
reg step_V;
reg sum_up;
reg [5:0] rate_V;
// remember: { log_msb, pow_addr } <= log_val[11:0] + { tl, 5'd0 } + { eg, 2'd0 };
reg [1:0] eg_cnt_base;
reg [14:0] eg_cnt;
always @(posedge clk) begin : envelope_counter
if( rst ) begin
eg_cnt_base <= 2'd0;
eg_cnt <=15'd0;
end
else begin
if( zero ) begin
// envelope counter increases every 3 output samples,
// there is one sample every 32 clock ticks
if( eg_cnt_base == 2'd2 ) begin
eg_cnt <= eg_cnt + 1'b1;
eg_cnt_base <= 2'd0;
end
else eg_cnt_base <= eg_cnt_base + 1'b1;
end
end
end
wire cnt_out; // = all_cnt_last[3*31-1:3*30];
reg [7:0] step_idx;
reg [2:0] state_III, state_IV, state_V, state_VI, state_VII, state_VIII;
wire [2:0] state_II;
wire ar_off_VI;
reg ar_off_III;
// Register Cycle I
always @(posedge clk) begin
if( d1l == 4'd15 )
d1level_II <= 5'h1f; // 93dB
else
d1level_II <= d1l;
end
// Register Cycle II
wire ssg_invertion_II, ssg_invertion_VIII;
reg ssg_invertion_III;
reg [4:0] cfg_III;
wire ssg_pg_rst = eg_II>=10'h200 && ssg_en_II &&
!( ssg_alt_II || ssg_hold_II );
wire ssg_en_out;
wire keyon_last_II;
reg ssg_en_in_II;
always @(*) begin
if( state_II==RELEASE )
ssg_en_in_II <= 1'b0;
else
ssg_en_in_II <= keyon_II ? ssg_en_II : ssg_en_out;
end
wire ar_off_II = arate_II == 5'h1f;
wire keyon_now_II = !keyon_last_II && keyon_II;
wire keyoff_now_II = keyon_last_II && !keyon_II;
always @(posedge clk) begin
// ar_off_III <= arate_II == 5'h1f;
// trigger release
if( keyoff_now_II ) begin
cfg_III <= { rrate_II, 1'b1 };
state_III <= RELEASE;
pg_rst_III <= 1'b0;
ar_off_III <= 1'b0;
end
else begin
// trigger 1st decay
if( keyon_now_II ) begin
cfg_III <= arate_II;
state_III <= ATTACK;
pg_rst_III <= 1'b1;
ar_off_III <= ar_off_II;
end
else begin : sel_rate
pg_rst_III <= (eg_II==10'h3FF) ||ssg_pg_rst;
if( (state_II==DECAY1 ||state_II==DECAY2) && ssg_en_II && eg_II >= 10'h200 ) begin
ssg_invertion_III <= ssg_alt_II ^ ssg_invertion_II;
if( ssg_hold_II ) begin
cfg_III <= 5'd0;
state_III <= HOLD; // repeats!
ar_off_III <= 1'b0;
end
else begin
cfg_III <= rate2_II;
state_III <= ATTACK; // repeats!
ar_off_III <= 1'b1;
end
end
else begin
ssg_invertion_III <= state_II==RELEASE ? 1'b0 : ssg_invertion_II;
case ( state_II )
ATTACK: begin
if( eg_II==10'd0 ) begin
state_III <= DECAY1;
cfg_III <= rate1_II;
end
else begin
state_III <= state_II; // attack
cfg_III <= arate_II;
end
ar_off_III <= 1'b0;
end
DECAY1: begin
if( eg_II[9:5] >= d1level_II ) begin
cfg_III <= rate2_II;
state_III <= DECAY2;
end
else begin
cfg_III <= rate1_II;
state_III <= state_II; // decay1
end
ar_off_III <= 1'b0;
end
DECAY2:
begin
cfg_III <= rate2_II;
state_III <= state_II; // decay2
ar_off_III <= 1'b0;
end
RELEASE: begin
cfg_III <= { rrate_II, 1'b1 };
state_III <= state_II; // release
ar_off_III <= 1'b0;
end
HOLD: begin
cfg_III <= 5'd0;
state_III <= HOLD; // repeats!
ar_off_III <= 1'b0;
end
endcase
end
end
end
eg_III <= eg_II;
end
///////////////////////////////////////////////////////////////////
// Register Cycle III
reg [6:0] pre_rate_III;
reg [5:0] rate_IV;
always @(*) begin : pre_rate_calc
if( cfg_III == 5'd0 )
pre_rate_III <= 6'd0;
else
case( ks_III )
2'd3: pre_rate_III <= { cfg_III, 1'b0 } + keycode_III;
2'd2: pre_rate_III <= { cfg_III, 1'b0 } + { 1'b0, keycode_III[4:1] };
2'd1: pre_rate_III <= { cfg_III, 1'b0 } + { 2'b0, keycode_III[4:2] };
2'd0: pre_rate_III <= { cfg_III, 1'b0 } + { 3'b0, keycode_III[4:3] };
endcase
end
always @(posedge clk) begin
if( rst ) begin
state_IV <= RELEASE;
eg_IV <= 10'h3ff;
rate_IV <= 5'h1F;
end
else begin
state_IV <= state_III;
eg_IV <= eg_III;
rate_IV <= pre_rate_III[6] ? 6'd63 : pre_rate_III[5:0];
end
end
///////////////////////////////////////////////////////////////////
// Register Cycle IV
reg [2:0] cnt_V;
always @(posedge clk) begin
if( rst ) begin
state_V <= RELEASE;
rate_V <= 5'h1f;
eg_V <= 10'h3ff;
//cnt_V<= 3'd0;
end
else begin
state_V <= state_IV;
rate_V <= rate_IV;
eg_V <= eg_IV;
if( state_IV == ATTACK )
case( rate_IV[5:2] )
4'h0: cnt_V <= eg_cnt[13:11];
4'h1: cnt_V <= eg_cnt[12:10];
4'h2: cnt_V <= eg_cnt[11: 9];
4'h3: cnt_V <= eg_cnt[10: 8];
4'h4: cnt_V <= eg_cnt[ 9: 7];
4'h5: cnt_V <= eg_cnt[ 8: 6];
4'h6: cnt_V <= eg_cnt[ 7: 5];
4'h7: cnt_V <= eg_cnt[ 6: 4];
4'h8: cnt_V <= eg_cnt[ 5: 3];
4'h9: cnt_V <= eg_cnt[ 4: 2];
4'ha: cnt_V <= eg_cnt[ 3: 1];
default: cnt_V <= eg_cnt[ 2: 0];
endcase
else
case( rate_IV[5:2] )
4'h0: cnt_V <= eg_cnt[14:12];
4'h1: cnt_V <= eg_cnt[13:11];
4'h2: cnt_V <= eg_cnt[12:10];
4'h3: cnt_V <= eg_cnt[11: 9];
4'h4: cnt_V <= eg_cnt[10: 8];
4'h5: cnt_V <= eg_cnt[ 9: 7];
4'h6: cnt_V <= eg_cnt[ 8: 6];
4'h7: cnt_V <= eg_cnt[ 7: 5];
4'h8: cnt_V <= eg_cnt[ 6: 4];
4'h9: cnt_V <= eg_cnt[ 5: 3];
4'ha: cnt_V <= eg_cnt[ 4: 2];
4'hb: cnt_V <= eg_cnt[ 3: 1];
default: cnt_V <= eg_cnt[ 2: 0];
endcase
end
end
//////////////////////////////////////////////////////////////
// Register Cycle V
always @(*) begin : rate_step
if( rate_V[5:4]==2'b11 ) begin // 0 means 1x, 1 means 2x
if( rate_V[5:2]==4'hf && state_V == ATTACK)
step_idx <= 8'b11111111; // Maximum attack speed, rates 60&61
else
case( rate_V[1:0] )
2'd0: step_idx <= 8'b00000000;
2'd1: step_idx <= 8'b10001000; // 2
2'd2: step_idx <= 8'b10101010; // 4
2'd3: step_idx <= 8'b11101110; // 6
endcase
end
else begin
if( rate_V[5:2]==4'd0 && state_V != ATTACK)
step_idx <= 8'b11111110; // limit slowest decay rate_IV
else
case( rate_V[1:0] )
2'd0: step_idx <= 8'b10101010; // 4
2'd1: step_idx <= 8'b11101010; // 5
2'd2: step_idx <= 8'b11101110; // 6
2'd3: step_idx <= 8'b11111110; // 7
endcase
end
// a rate_IV of zero keeps the level still
step_V <= rate_V[5:1]==5'd0 ? 1'b0 : step_idx[ cnt_V ];
end
reg [5:1] rate_VI;
reg [9:0] eg_VI;
reg step_VI;
always @(posedge clk) begin
if( rst ) begin
state_VI <= RELEASE;
rate_VI <= 5'd1;
eg_VI <= 10'h3ff;
sum_up <= 1'b0;
step_VI <= 1'b0;
end
else begin
state_VI <= state_V;
rate_VI <= rate_V[5:1];
eg_VI <= eg_V;
sum_up <= cnt_V[0] != cnt_out;
step_VI <= step_V;
end
end
//////////////////////////////////////////////////////////////
// Register cycle VI
reg [3:0] preatt_VI;
reg [5:0] att_VI;
wire ssg_en_VI;
reg [9:0] eg_VII, eg_stopped_VII;
reg [10:0] egatt_VI;
always @(*) begin
case( rate_VI[5:2] )
4'b1100: preatt_VI <= { step_VI, ~step_VI }; // 12
4'b1101: preatt_VI <= { step_VI, ~step_VI, 1'b0 }; // 13
4'b1110: preatt_VI <= { step_VI, ~step_VI, 2'b0 }; // 14
4'b1111: preatt_VI <= 4'd8;// 15
default: preatt_VI <= { step_VI, 1'b0 };
endcase
att_VI <= ssg_en_VI ? { preatt_VI, 2'd0 } : { 2'd0, preatt_VI };
egatt_VI <= att_VI + eg_VI;
eg_stopped_VII <= eg_VI;
end
reg [8:0] ar_sum0;
reg [9:0] ar_result, ar_sum;
always @(*) begin : ar_calculation
casex( rate_VI[5:2] )
default: ar_sum0 <= eg_VI[9:4] + 1'd1;
4'b1100: ar_sum0 <= eg_VI[9:4] + 1'd1;
4'b1101: ar_sum0 <= eg_VI[9:3] + 1'd1;
4'b111x: ar_sum0 <= eg_VI[9:2] + 1'd1;
endcase
if( rate_VI[5:4] == 2'b11 )
ar_sum <= step_VI ? { ar_sum0, 1'b0 } : { 1'b0, ar_sum0 };
else
ar_sum <= step_VI ? { 1'b0, ar_sum0 } : 10'd0;
ar_result <= ar_sum<eg_VI ? eg_VI-ar_sum : 10'd0;
end
always @(posedge clk) begin
if( rst ) begin
eg_VII <= 10'h3ff;
state_VII <= RELEASE;
end
else begin
if( ar_off_VI ) begin
// eg_VII <= ssg_en_II ? 10'h200 : 10'd0;
eg_VII <= 10'd0;
end
else
if( state_VI == ATTACK ) begin
if( sum_up && eg_VI != 10'd0 )
if( rate_VI[5:1]==4'hf )
eg_VII <= 10'd0;
else
eg_VII <= ar_result;
else
eg_VII <= eg_VI;
end
else begin : DECAY_SUM
if( sum_up ) begin
if ( egatt_VI<= 10'd1023 )
eg_VII <= egatt_VI[9:0];
else eg_VII <= 10'h3FF;
end
else eg_VII <= eg_VI;
end
state_VII <= state_VI;
end
end
//////////////////////////////////////////////////////////////
// Register cycle VII
reg [9:0] eg_internal_VIII;
reg [8:0] am_final;
reg [11:0] sum_eg_tl;
always @(*) begin : sum_eg_and_tl
casex( {amsen_VII, ams_VII } )
3'b0xx,3'b100: am_final <= 9'd0;
3'b101: am_final <= { 2'b00, am };
3'b110: am_final <= { 1'b0, am, 1'b0};
3'b111: am_final <= { am, 2'b0 };
endcase
`ifdef TEST_SUPPORT
if( test_eg && tl_VII!=7'd0 )
sum_eg_tl <= 11'd0;
else
`endif
sum_eg_tl <= { tl_VII, 3'd0 }
+ eg_VII
+ { am_final, 1'b0 };
end
always @(posedge clk) begin
if( rst ) begin
eg_internal_VIII <= 10'h3ff;
state_VIII <= RELEASE;
end
else begin
eg_internal_VIII <= sum_eg_tl[11:10] > 2'b0 ? {10{1'b1}} : sum_eg_tl[9:0];
state_VIII <= state_VII;
end
end
//////////////////////////////////////////////////////////////
// Register cycle VIII
wire ssg_inv_VIII, ssg_en_VIII;
//reg [9:0] eg_IX;
always @(posedge clk) begin
if( rst )
eg_IX <= 10'h3ff;
else begin
if( ssg_en_VIII && (ssg_invertion_VIII ^^ ssg_inv_VIII) )
eg_IX <= eg_internal_VIII>=10'h200 ? 10'h0 : (10'h200 - eg_internal_VIII);
else
eg_IX <= eg_internal_VIII;
end
end
//////////////////////////////////////////////////////////////
// Register cycle IX-XII
/*
jt12_sh #(.width(10), .stages(12-8)) u_padding(
.clk ( clk ),
.din ( eg_IX ),
.drop ( eg_XII )
);
*/
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
// Shift registers
jt12_sh24 #( .width(1) ) u_ssgen(
.clk ( clk ),
.din ( ssg_en_in_II ),
.st4 ( ssg_en_VI ),
.st6 ( ssg_en_VIII ), // note that din is *_II
.st24 ( ssg_en_out )
);
jt12_sh #( .width(1), .stages(6) ) u_ssgattsh(
.clk ( clk ),
.din ( ssg_inv_II ),
.drop ( ssg_inv_VIII )
);
jt12_sh #( .width(1), .stages(3) ) u_aroffsh(
.clk ( clk ),
.din ( ar_off_III),
.drop ( ar_off_VI )
);
jt12_sh #( .width(1), .stages(5) ) u_ssg1sh(
.clk ( clk ),
.din ( ssg_invertion_III ),
.drop ( ssg_invertion_VIII )
);
jt12_sh #( .width(1), .stages(18) ) u_ssg2sh(
.clk ( clk ),
.din ( ssg_invertion_VIII ),
.drop ( ssg_invertion_II )
);
/* Had 27 stages in JT51, for 32 operators
Has 19 stages here, for 24 operators
plus 1 extra stage. 20 stages does not work well.
Maybe JT51 should be 26!! */
jt12_sh/*_rst*/ #( .width(10), .stages(19)/*, .rstval(1'b1)*/ ) u_egsh(
.clk ( clk ),
// .rst ( rst ),
.din ( eg_stop ? eg_stopped_VII : eg_VII ),
.drop ( eg_II )
);
/* Had 32 stages in JT51, for 32 operators
Has 24 stages here, for 24 operators */
jt12_sh/*_rst*/ #( .width(1), .stages(24) ) u_cntsh(
.clk ( clk ),
// .rst ( rst ),
.din ( cnt_V[0] ),
.drop ( cnt_out )
);
jt12_sh_rst #( .width(1), .stages(24) ) u_konsh(
.clk ( clk ),
// .rst ( rst ),
.din ( keyon_II ),
.drop ( keyon_last_II )
);
/* Had 31 stages in JT51, for 32 operators
Has 23 stages here, for 24 operators */
jt12_sh/*_rst*/ #( .width(3), .stages(18)/*, .rstval(1'b1)*/ ) u_statesh(
.clk ( clk ),
// .rst ( rst ),
.din ( state_VIII),
.drop ( state_II )
);
`ifdef SIMULATION
reg [4:0] sep24_cnt;
wire [2:0] state_ch0s1, state_ch1s1, state_ch2s1, state_ch3s1,
state_ch4s1, state_ch5s1, state_ch0s2, state_ch1s2,
state_ch2s2, state_ch3s2, state_ch4s2, state_ch5s2,
state_ch0s3, state_ch1s3, state_ch2s3, state_ch3s3,
state_ch4s3, state_ch5s3, state_ch0s4, state_ch1s4,
state_ch2s4, state_ch3s4, state_ch4s4, state_ch5s4;
always @(posedge clk)
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
sep24 #( .width(3), .pos0(0) ) stsep
(
.clk ( clk ),
.mixed ( state_II ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (state_ch0s1),
.ch1s1 (state_ch1s1),
.ch2s1 (state_ch2s1),
.ch3s1 (state_ch3s1),
.ch4s1 (state_ch4s1),
.ch5s1 (state_ch5s1),
.ch0s2 (state_ch0s2),
.ch1s2 (state_ch1s2),
.ch2s2 (state_ch2s2),
.ch3s2 (state_ch3s2),
.ch4s2 (state_ch4s2),
.ch5s2 (state_ch5s2),
.ch0s3 (state_ch0s3),
.ch1s3 (state_ch1s3),
.ch2s3 (state_ch2s3),
.ch3s3 (state_ch3s3),
.ch4s3 (state_ch4s3),
.ch5s3 (state_ch5s3),
.ch0s4 (state_ch0s4),
.ch1s4 (state_ch1s4),
.ch2s4 (state_ch2s4),
.ch3s4 (state_ch3s4),
.ch4s4 (state_ch4s4),
.ch5s4 (state_ch5s4)
);
`endif
endmodule

View File

@ -0,0 +1,76 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
// altera message_off 10030
module jt12_exprom
(
input [4:0] addr,
input clk,
output reg [44:0] exp
);
reg [44:0] explut_jt51[31:0];
initial
begin
explut_jt51[0] <= 45'b111110101011010110001011010000010010111011011;
explut_jt51[1] <= 45'b111101010011010101000011001100101110110101011;
explut_jt51[2] <= 45'b111011111011010011110111001000110010101110011;
explut_jt51[3] <= 45'b111010100101010010101111000100110010101000011;
explut_jt51[4] <= 45'b111001001101010001100111000000110010100001011;
explut_jt51[5] <= 45'b110111111011010000011110111101010010011011011;
explut_jt51[6] <= 45'b110110100011001111010110111001010010010100100;
explut_jt51[7] <= 45'b110101001011001110001110110101110010001110011;
explut_jt51[8] <= 45'b110011111011001101000110110001110010001000011;
explut_jt51[9] <= 45'b110010100011001011111110101110010010000010011;
explut_jt51[10] <= 45'b110001010011001010111010101010010001111011011;
explut_jt51[11] <= 45'b101111111011001001110010100110110001110101011;
explut_jt51[12] <= 45'b101110101011001000101010100011001101101111011;
explut_jt51[13] <= 45'b101101010101000111100110011111010001101001011;
explut_jt51[14] <= 45'b101100000011000110100010011011110001100011011;
explut_jt51[15] <= 45'b101010110011000101011110011000010001011101011;
explut_jt51[16] <= 45'b101001100011000100011010010100101101010111011;
explut_jt51[17] <= 45'b101000010011000011010010010001001101010001011;
explut_jt51[18] <= 45'b100111000011000010010010001101101101001011011;
explut_jt51[19] <= 45'b100101110011000001001110001010001101000101011;
explut_jt51[20] <= 45'b100100100011000000001010000110010000111111011;
explut_jt51[21] <= 45'b100011010010111111001010000011001100111001011;
explut_jt51[22] <= 45'b100010000010111110000101111111101100110011011;
explut_jt51[23] <= 45'b100000110010111101000001111100001100101101011;
explut_jt51[24] <= 45'b011111101010111100000001111000101100101000010;
explut_jt51[25] <= 45'b011110011010111011000001110101001100100010011;
explut_jt51[26] <= 45'b011101001010111010000001110001110000011100011;
explut_jt51[27] <= 45'b011100000010111001000001101110010000010110011;
explut_jt51[28] <= 45'b011010110010111000000001101011001100010001011;
explut_jt51[29] <= 45'b011001101010110111000001100111101100001011011;
explut_jt51[30] <= 45'b011000100000110110000001100100010000000110010;
explut_jt51[31] <= 45'b010111010010110101000001100001001100000000011;
end
always @ (posedge clk)
exp <= explut_jt51[addr];
endmodule

68
src/sound/jt12/jt12_kon.v Normal file
View File

@ -0,0 +1,68 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
module jt12_kon(
input rst,
input clk,
input [3:0] keyon_op,
input [2:0] keyon_ch,
input [1:0] cur_op,
input [2:0] cur_ch,
input up_keyon,
input csm,
input flag_A,
input overflow_A,
output reg keyon_II
);
//reg csm_copy;
reg din;
wire drop;
reg [3:0] cur_op_hot;
always @(posedge clk)
keyon_II <= (csm&&cur_ch==2'd2&&overflow_A) || drop;
always @(*) begin
case( cur_op )
2'd0: cur_op_hot <= 4'b0001; // S1
2'd1: cur_op_hot <= 4'b0100; // S3
2'd2: cur_op_hot <= 4'b0010; // S2
2'd3: cur_op_hot <= 4'b1000; // S4
endcase
din <= keyon_ch==cur_ch && up_keyon ? |(keyon_op&cur_op_hot) : drop;
end
jt12_sh_rst #(.width(1),.stages(24)) u_konch(
.clk ( clk ),
// .rst ( rst ),
.din ( din ),
.drop ( drop )
);
endmodule

68
src/sound/jt12/jt12_lfo.v Normal file
View File

@ -0,0 +1,68 @@
/* This file is part of jt12.
jt12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
jt12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with jt12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 25-2-2017
*/
`timescale 1ns / 1ps
/*
tab size 4
*/
module jt12_lfo(
input rst,
input clk,
input zero,
input lfo_rst,
input lfo_en,
input [2:0] lfo_freq,
output reg [6:0] lfo_mod
);
reg [6:0] cnt, limit;
always @(*)
case( lfo_freq )
3'd0: limit <= 7'd108;
3'd1: limit <= 7'd78;
3'd2: limit <= 7'd71;
3'd3: limit <= 7'd67;
3'd4: limit <= 7'd62;
3'd5: limit <= 7'd44;
3'd6: limit <= 7'd8;
3'd7: limit <= 7'd5;
endcase
always @(posedge clk) begin
if( rst || !lfo_en )
{ lfo_mod, cnt } <= 14'd0;
else begin
if(zero) begin
if( cnt == limit ) begin
cnt <= 7'd0;
lfo_mod <= lfo_mod + 1'b1;
end
else
cnt <= cnt + 1'b1;
end
end
end
endmodule

View File

@ -0,0 +1,42 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: March, 10th 2017
*/
/* Limiting amplifier by 3dB * shift */
`timescale 1ns / 1ps
module jt12_limitamp #( parameter width=20, shift=5 ) (
input signed [width-1:0] left_in,
input signed [width-1:0] right_in,
output reg signed [width-1:0] left_out,
output reg signed [width-1:0] right_out
);
always @(*) begin
left_out <= ^left_in[width-1:width-1-shift] ?
{ left_in[width-1], {(width-1){~left_in[width-1]}}} :
left_in <<< shift;
right_out <= ^right_in[width-1:width-1-shift] ?
{ right_in[width-1], {(width-1){~right_in[width-1]}}} :
right_in <<< shift;
end
endmodule

370
src/sound/jt12/jt12_mmr.v Normal file
View File

@ -0,0 +1,370 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2017
*/
`timescale 1ns / 1ps
module jt12_mmr(
input rst,
input clk,
input [7:0] din,
input write,
input [1:0] addr,
output reg busy,
output ch6op,
// LFO
output reg [2:0] lfo_freq,
output reg lfo_en,
// Timers
output reg [9:0] value_A,
output reg [7:0] value_B,
output reg load_A,
output reg load_B,
output reg enable_irq_A,
output reg enable_irq_B,
output reg clr_flag_A,
output reg clr_flag_B,
output reg fast_timers,
input flag_A,
input overflow_A,
// PCM
output reg [8:0] pcm,
output reg pcm_en,
`ifdef TEST_SUPPORT
// Test
output reg test_eg,
output reg test_op0,
`endif
// Operator
output use_prevprev1,
output use_internal_x,
output use_internal_y,
output use_prev2,
output use_prev1,
// PG
output [10:0] fnum_I,
output [ 2:0] block_I,
output reg pg_stop,
// REG
output [ 1:0] rl,
output [ 2:0] fb_II,
output [ 2:0] alg,
output [ 2:0] pms,
output [ 1:0] ams_VII,
output amsen_VII,
output [ 2:0] dt1_II,
output [ 3:0] mul_V,
output [ 6:0] tl_VII,
output reg eg_stop,
output [ 4:0] ar_II,
output [ 4:0] d1r_II,
output [ 4:0] d2r_II,
output [ 3:0] rr_II,
output [ 3:0] d1l,
output [ 1:0] ks_III,
// SSG operation
output ssg_en_II,
output [2:0] ssg_eg_II,
output keyon_II,
// output [ 1:0] cur_op,
// Operator
output zero,
output s1_enters,
output s2_enters,
output s3_enters,
output s4_enters
);
reg [7:0] selected_register;
//reg sch; // 0 => CH1~CH3 only available. 1=>CH4~CH6
/*
reg irq_zero_en, irq_brdy_en, irq_eos_en,
irq_tb_en, irq_ta_en;
*/
reg up_clr;
reg up_alg;
reg up_block;
reg up_fnumlo;
reg up_pms;
reg up_dt1;
reg up_tl;
reg up_ks_ar;
reg up_amen_d1r;
reg up_d2r;
reg up_d1l;
reg up_ssgeg;
reg up_keyon;
wire busy_reg;
parameter REG_TEST = 8'h01,
REG_TEST2 = 8'h02,
REG_TESTYM = 8'h21,
REG_LFO = 8'h22,
REG_CLKA1 = 8'h24,
REG_CLKA2 = 8'h25,
REG_CLKB = 8'h26,
REG_TIMER = 8'h27,
REG_KON = 8'h28,
REG_IRQMASK = 8'h29,
REG_PCM = 8'h2A,
REG_PCM_EN = 8'h2B,
REG_DACTEST = 8'h2C,
REG_CLK_N6 = 8'h2D,
REG_CLK_N3 = 8'h2E,
REG_CLK_N2 = 8'h2F;
reg csm, effect;
reg [ 2:0] block_ch3op2, block_ch3op3, block_ch3op1;
reg [10:0] fnum_ch3op2, fnum_ch3op3, fnum_ch3op1;
reg [ 5:0] latch_ch3op2, latch_ch3op3, latch_ch3op1;
reg [2:0] up_ch;
reg [1:0] up_op;
`include "jt12_mmr_sim.vh"
always @(posedge clk) begin : memory_mapped_registers
reg old_write;
old_write <= write;
if( rst ) begin
selected_register <= 8'h0;
busy <= 1'b0;
up_ch <= 3'd0;
up_op <= 2'd0;
{ up_keyon, up_alg, up_block, up_fnumlo,
up_pms, up_dt1, up_tl, up_ks_ar,
up_amen_d1r,up_d2r, up_d1l, up_ssgeg } <= 12'd0;
`ifdef TEST_SUPPORT
{ test_eg, test_op0 } <= 2'd0;
`endif
// IRQ Mask
/*{ irq_zero_en, irq_brdy_en, irq_eos_en,
irq_tb_en, irq_ta_en } = 5'h1f; */
// timers
{ value_A, value_B } <= 18'd0;
{ clr_flag_B, clr_flag_A,
enable_irq_B, enable_irq_A, load_B, load_A } <= 6'd0;
up_clr <= 1'b0;
fast_timers <= 1'b0;
// LFO
lfo_freq <= 3'd0;
lfo_en <= 1'b0;
csm <= 1'b0;
effect <= 1'b0;
// PCM
pcm <= 9'h0;
pcm_en <= 1'b0;
// sch <= 1'b0;
// Original test features
eg_stop <= 1'b0;
pg_stop <= 1'b0;
`ifdef SIMULATION
mmr_dump <= 1'b0;
`endif
end else begin
// WRITE IN REGISTERS
if( old_write ^ write ) begin
busy <= 1'b1;
if( !addr[0] ) begin
selected_register <= din;
up_ch <= {addr[1], din[1:0]};
up_op <= din[3:2]; // 0=S1,1=S3,2=S2,3=S4
end else begin
// Global registers
if( selected_register < 8'h30 ) begin
case( selected_register)
// registros especiales
//REG_TEST: lfo_rst <= 1'b1; // regardless of din
`ifdef TEST_SUPPORT
REG_TEST2: { mmr_dump, test_op0, test_eg } <= din[2:0];
`endif
REG_TESTYM: begin
eg_stop <= din[5];
pg_stop <= din[3];
fast_timers <= din[2];
end
REG_KON: up_keyon <= 1'b1;
REG_CLKA1: value_A[9:2]<= din;
REG_CLKA2: value_A[1:0]<= din[1:0];
REG_CLKB: value_B <= din;
REG_TIMER: begin
effect <= |din[7:6];
csm <= din[7:6] == 2'b10;
{ clr_flag_B, clr_flag_A,
enable_irq_B, enable_irq_A,
load_B, load_A } <= din[5:0];
end
REG_LFO: { lfo_en, lfo_freq } <= din[3:0];
REG_DACTEST:pcm[0] <= din[3];
REG_PCM: pcm[8:1]<= din;
REG_PCM_EN: pcm_en <= din[7];
endcase
end
else if( selected_register[1:0]!=2'b11 ) begin
// channel registers
if( selected_register >= 8'hA0 ) begin
case( selected_register )
8'hA0, 8'hA1, 8'hA2: up_fnumlo <= 1'b1;
8'hA4, 8'hA5, 8'hA6: up_block <= 1'b1;
// CH3 special registers
8'hA9: { block_ch3op1, fnum_ch3op1 } <= { latch_ch3op1, din };
8'hA8: { block_ch3op3, fnum_ch3op3 } <= { latch_ch3op3, din };
8'hAA: { block_ch3op2, fnum_ch3op2 } <= { latch_ch3op2, din };
8'hAD: latch_ch3op1 <= din[5:0];
8'hAC: latch_ch3op3 <= din[5:0];
8'hAE: latch_ch3op2 <= din[5:0];
// FB + Algorithm
8'hB0, 8'hB1, 8'hB2: up_alg <= 1'b1;
8'hB4, 8'hB5, 8'hB6: up_pms <= 1'b1;
endcase
end
else
// operator registers
begin
case( selected_register[7:4] )
4'h3: up_dt1 <= 1'b1;
4'h4: up_tl <= 1'b1;
4'h5: up_ks_ar <= 1'b1;
4'h6: up_amen_d1r <= 1'b1;
4'h7: up_d2r <= 1'b1;
4'h8: up_d1l <= 1'b1;
4'h9: up_ssgeg <= 1'b1;
endcase
end
end
end
end
else begin /* clear once-only bits */
// csm <= 1'b0;
// lfo_rst <= 1'b0;
{ clr_flag_B, clr_flag_A, load_B, load_A } <= 4'd0;
`ifdef SIMULATION
mmr_dump <= 1'b0;
`endif
up_keyon <= 1'b0;
if( |{ up_keyon, up_alg, up_block, up_fnumlo,
up_pms, up_dt1, up_tl, up_ks_ar,
up_amen_d1r,up_d2r, up_d1l, up_ssgeg } == 1'b0 )
busy <= 0;
else
busy <= 1'b1;
if( busy_reg ) begin
up_clr <= 1'b1;
end
else begin
up_clr <= 1'b0;
if( up_clr )
{ up_alg, up_block, up_fnumlo,
up_pms, up_dt1, up_tl, up_ks_ar,
up_amen_d1r,up_d2r, up_d1l, up_ssgeg } <= 11'd0;
end
end
end
end
jt12_reg u_reg(
.rst ( rst ),
.clk ( clk ), // P1
.din ( din ),
.up_keyon ( up_keyon ),
.up_alg ( up_alg ),
.up_block ( up_block ),
.up_fnumlo ( up_fnumlo ),
.up_pms ( up_pms ),
.up_dt1 ( up_dt1 ),
.up_tl ( up_tl ),
.up_ks_ar ( up_ks_ar ),
.up_amen_d1r(up_amen_d1r),
.up_d2r ( up_d2r ),
.up_d1l ( up_d1l ),
.up_ssgeg ( up_ssgeg ),
.op ( up_op ), // operator to update
.ch ( up_ch ), // channel to update
.csm ( csm ),
.flag_A ( flag_A ),
.overflow_A ( overflow_A),
.busy ( busy_reg ),
.ch6op ( ch6op ),
// CH3 Effect-mode operation
.effect ( effect ), // allows independent freq. for CH 3
.fnum_ch3op2( fnum_ch3op2 ),
.fnum_ch3op3( fnum_ch3op3 ),
.fnum_ch3op1( fnum_ch3op1 ),
.block_ch3op2( block_ch3op2 ),
.block_ch3op3( block_ch3op3 ),
.block_ch3op1( block_ch3op1 ),
// Operator
.use_prevprev1(use_prevprev1),
.use_internal_x(use_internal_x),
.use_internal_y(use_internal_y),
.use_prev2 ( use_prev2 ),
.use_prev1 ( use_prev1 ),
// PG
.fnum_I ( fnum_I ),
.block_I ( block_I ),
.mul_V ( mul_V ),
.dt1_II ( dt1_II ),
// EG
.ar_II (ar_II ), // attack rate
.d1r_II (d1r_II ), // decay rate
.d2r_II (d2r_II ), // sustain rate
.rr_II (rr_II ), // release rate
.d1l (d1l ), // sustain level
.ks_III (ks_III ), // key scale
// SSG operation
.ssg_en_II ( ssg_en_II ),
.ssg_eg_II ( ssg_eg_II ),
// envelope number
.tl_VII (tl_VII ),
.pms (pms ),
.ams_VII (ams_VII ),
.amsen_VII (amsen_VII ),
// channel configuration
.rl ( rl ),
.fb_II ( fb_II ),
.alg ( alg ),
.keyon_II ( keyon_II ),
//.cur_op ( cur_op ),
.zero ( zero ),
.s1_enters ( s1_enters ),
.s2_enters ( s2_enters ),
.s3_enters ( s3_enters ),
.s4_enters ( s4_enters )
);
endmodule

View File

@ -0,0 +1,836 @@
`ifdef SIMULATION
reg [4:0] sep24_cnt;
reg mmr_dump;
always @(posedge clk )
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
wire [10:0] fnum_ch0s1, fnum_ch1s1, fnum_ch2s1, fnum_ch3s1,
fnum_ch4s1, fnum_ch5s1, fnum_ch0s2, fnum_ch1s2,
fnum_ch2s2, fnum_ch3s2, fnum_ch4s2, fnum_ch5s2,
fnum_ch0s3, fnum_ch1s3, fnum_ch2s3, fnum_ch3s3,
fnum_ch4s3, fnum_ch5s3, fnum_ch0s4, fnum_ch1s4,
fnum_ch2s4, fnum_ch3s4, fnum_ch4s4, fnum_ch5s4;
sep24 #( .width(11), .pos0(1) ) fnum_sep
(
.clk ( clk ),
.mixed ( fnum_I ),
.mask ( 11'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (fnum_ch0s1),
.ch1s1 (fnum_ch1s1),
.ch2s1 (fnum_ch2s1),
.ch3s1 (fnum_ch3s1),
.ch4s1 (fnum_ch4s1),
.ch5s1 (fnum_ch5s1),
.ch0s2 (fnum_ch0s2),
.ch1s2 (fnum_ch1s2),
.ch2s2 (fnum_ch2s2),
.ch3s2 (fnum_ch3s2),
.ch4s2 (fnum_ch4s2),
.ch5s2 (fnum_ch5s2),
.ch0s3 (fnum_ch0s3),
.ch1s3 (fnum_ch1s3),
.ch2s3 (fnum_ch2s3),
.ch3s3 (fnum_ch3s3),
.ch4s3 (fnum_ch4s3),
.ch5s3 (fnum_ch5s3),
.ch0s4 (fnum_ch0s4),
.ch1s4 (fnum_ch1s4),
.ch2s4 (fnum_ch2s4),
.ch3s4 (fnum_ch3s4),
.ch4s4 (fnum_ch4s4),
.ch5s4 (fnum_ch5s4)
);
wire [2:0] block_ch0s1, block_ch1s1, block_ch2s1, block_ch3s1,
block_ch4s1, block_ch5s1, block_ch0s2, block_ch1s2,
block_ch2s2, block_ch3s2, block_ch4s2, block_ch5s2,
block_ch0s3, block_ch1s3, block_ch2s3, block_ch3s3,
block_ch4s3, block_ch5s3, block_ch0s4, block_ch1s4,
block_ch2s4, block_ch3s4, block_ch4s4, block_ch5s4;
sep24 #( .width(3), .pos0(1) ) block_sep
(
.clk ( clk ),
.mixed ( block_I ),
.mask ( 3'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (block_ch0s1),
.ch1s1 (block_ch1s1),
.ch2s1 (block_ch2s1),
.ch3s1 (block_ch3s1),
.ch4s1 (block_ch4s1),
.ch5s1 (block_ch5s1),
.ch0s2 (block_ch0s2),
.ch1s2 (block_ch1s2),
.ch2s2 (block_ch2s2),
.ch3s2 (block_ch3s2),
.ch4s2 (block_ch4s2),
.ch5s2 (block_ch5s2),
.ch0s3 (block_ch0s3),
.ch1s3 (block_ch1s3),
.ch2s3 (block_ch2s3),
.ch3s3 (block_ch3s3),
.ch4s3 (block_ch4s3),
.ch5s3 (block_ch5s3),
.ch0s4 (block_ch0s4),
.ch1s4 (block_ch1s4),
.ch2s4 (block_ch2s4),
.ch3s4 (block_ch3s4),
.ch4s4 (block_ch4s4),
.ch5s4 (block_ch5s4)
);
wire [1:0] rl_ch0s1, rl_ch1s1, rl_ch2s1, rl_ch3s1,
rl_ch4s1, rl_ch5s1, rl_ch0s2, rl_ch1s2,
rl_ch2s2, rl_ch3s2, rl_ch4s2, rl_ch5s2,
rl_ch0s3, rl_ch1s3, rl_ch2s3, rl_ch3s3,
rl_ch4s3, rl_ch5s3, rl_ch0s4, rl_ch1s4,
rl_ch2s4, rl_ch3s4, rl_ch4s4, rl_ch5s4;
sep24 #( .width(2), .pos0(1) ) rl_sep
(
.clk ( clk ),
.mixed ( rl ),
.mask ( 2'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (rl_ch0s1),
.ch1s1 (rl_ch1s1),
.ch2s1 (rl_ch2s1),
.ch3s1 (rl_ch3s1),
.ch4s1 (rl_ch4s1),
.ch5s1 (rl_ch5s1),
.ch0s2 (rl_ch0s2),
.ch1s2 (rl_ch1s2),
.ch2s2 (rl_ch2s2),
.ch3s2 (rl_ch3s2),
.ch4s2 (rl_ch4s2),
.ch5s2 (rl_ch5s2),
.ch0s3 (rl_ch0s3),
.ch1s3 (rl_ch1s3),
.ch2s3 (rl_ch2s3),
.ch3s3 (rl_ch3s3),
.ch4s3 (rl_ch4s3),
.ch5s3 (rl_ch5s3),
.ch0s4 (rl_ch0s4),
.ch1s4 (rl_ch1s4),
.ch2s4 (rl_ch2s4),
.ch3s4 (rl_ch3s4),
.ch4s4 (rl_ch4s4),
.ch5s4 (rl_ch5s4)
);
wire [2:0] fb_ch0s1, fb_ch1s1, fb_ch2s1, fb_ch3s1,
fb_ch4s1, fb_ch5s1, fb_ch0s2, fb_ch1s2,
fb_ch2s2, fb_ch3s2, fb_ch4s2, fb_ch5s2,
fb_ch0s3, fb_ch1s3, fb_ch2s3, fb_ch3s3,
fb_ch4s3, fb_ch5s3, fb_ch0s4, fb_ch1s4,
fb_ch2s4, fb_ch3s4, fb_ch4s4, fb_ch5s4;
sep24 #( .width(3), .pos0(0) ) fb_sep
(
.clk ( clk ),
.mixed ( fb_II ),
.mask ( 3'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (fb_ch0s1),
.ch1s1 (fb_ch1s1),
.ch2s1 (fb_ch2s1),
.ch3s1 (fb_ch3s1),
.ch4s1 (fb_ch4s1),
.ch5s1 (fb_ch5s1),
.ch0s2 (fb_ch0s2),
.ch1s2 (fb_ch1s2),
.ch2s2 (fb_ch2s2),
.ch3s2 (fb_ch3s2),
.ch4s2 (fb_ch4s2),
.ch5s2 (fb_ch5s2),
.ch0s3 (fb_ch0s3),
.ch1s3 (fb_ch1s3),
.ch2s3 (fb_ch2s3),
.ch3s3 (fb_ch3s3),
.ch4s3 (fb_ch4s3),
.ch5s3 (fb_ch5s3),
.ch0s4 (fb_ch0s4),
.ch1s4 (fb_ch1s4),
.ch2s4 (fb_ch2s4),
.ch3s4 (fb_ch3s4),
.ch4s4 (fb_ch4s4),
.ch5s4 (fb_ch5s4)
);
wire [2:0] alg_ch0s1, alg_ch1s1, alg_ch2s1, alg_ch3s1,
alg_ch4s1, alg_ch5s1, alg_ch0s2, alg_ch1s2,
alg_ch2s2, alg_ch3s2, alg_ch4s2, alg_ch5s2,
alg_ch0s3, alg_ch1s3, alg_ch2s3, alg_ch3s3,
alg_ch4s3, alg_ch5s3, alg_ch0s4, alg_ch1s4,
alg_ch2s4, alg_ch3s4, alg_ch4s4, alg_ch5s4;
sep24 #( .width(3), .pos0(1) ) alg_sep
(
.clk ( clk ),
.mixed ( alg ),
.mask ( 3'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (alg_ch0s1),
.ch1s1 (alg_ch1s1),
.ch2s1 (alg_ch2s1),
.ch3s1 (alg_ch3s1),
.ch4s1 (alg_ch4s1),
.ch5s1 (alg_ch5s1),
.ch0s2 (alg_ch0s2),
.ch1s2 (alg_ch1s2),
.ch2s2 (alg_ch2s2),
.ch3s2 (alg_ch3s2),
.ch4s2 (alg_ch4s2),
.ch5s2 (alg_ch5s2),
.ch0s3 (alg_ch0s3),
.ch1s3 (alg_ch1s3),
.ch2s3 (alg_ch2s3),
.ch3s3 (alg_ch3s3),
.ch4s3 (alg_ch4s3),
.ch5s3 (alg_ch5s3),
.ch0s4 (alg_ch0s4),
.ch1s4 (alg_ch1s4),
.ch2s4 (alg_ch2s4),
.ch3s4 (alg_ch3s4),
.ch4s4 (alg_ch4s4),
.ch5s4 (alg_ch5s4)
);
wire [2:0] dt1_ch0s1, dt1_ch1s1, dt1_ch2s1, dt1_ch3s1,
dt1_ch4s1, dt1_ch5s1, dt1_ch0s2, dt1_ch1s2,
dt1_ch2s2, dt1_ch3s2, dt1_ch4s2, dt1_ch5s2,
dt1_ch0s3, dt1_ch1s3, dt1_ch2s3, dt1_ch3s3,
dt1_ch4s3, dt1_ch5s3, dt1_ch0s4, dt1_ch1s4,
dt1_ch2s4, dt1_ch3s4, dt1_ch4s4, dt1_ch5s4;
sep24 #( .width(3), .pos0(0) ) dt1_sep
(
.clk ( clk ),
.mixed ( dt1_II ),
.mask ( 3'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (dt1_ch0s1),
.ch1s1 (dt1_ch1s1),
.ch2s1 (dt1_ch2s1),
.ch3s1 (dt1_ch3s1),
.ch4s1 (dt1_ch4s1),
.ch5s1 (dt1_ch5s1),
.ch0s2 (dt1_ch0s2),
.ch1s2 (dt1_ch1s2),
.ch2s2 (dt1_ch2s2),
.ch3s2 (dt1_ch3s2),
.ch4s2 (dt1_ch4s2),
.ch5s2 (dt1_ch5s2),
.ch0s3 (dt1_ch0s3),
.ch1s3 (dt1_ch1s3),
.ch2s3 (dt1_ch2s3),
.ch3s3 (dt1_ch3s3),
.ch4s3 (dt1_ch4s3),
.ch5s3 (dt1_ch5s3),
.ch0s4 (dt1_ch0s4),
.ch1s4 (dt1_ch1s4),
.ch2s4 (dt1_ch2s4),
.ch3s4 (dt1_ch3s4),
.ch4s4 (dt1_ch4s4),
.ch5s4 (dt1_ch5s4)
);
wire [3:0] mul_ch0s1, mul_ch1s1, mul_ch2s1, mul_ch3s1,
mul_ch4s1, mul_ch5s1, mul_ch0s2, mul_ch1s2,
mul_ch2s2, mul_ch3s2, mul_ch4s2, mul_ch5s2,
mul_ch0s3, mul_ch1s3, mul_ch2s3, mul_ch3s3,
mul_ch4s3, mul_ch5s3, mul_ch0s4, mul_ch1s4,
mul_ch2s4, mul_ch3s4, mul_ch4s4, mul_ch5s4;
sep24 #( .width(4), .pos0(21) ) mul_sep
(
.clk ( clk ),
.mixed ( mul_V ),
.mask ( 4'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (mul_ch0s1),
.ch1s1 (mul_ch1s1),
.ch2s1 (mul_ch2s1),
.ch3s1 (mul_ch3s1),
.ch4s1 (mul_ch4s1),
.ch5s1 (mul_ch5s1),
.ch0s2 (mul_ch0s2),
.ch1s2 (mul_ch1s2),
.ch2s2 (mul_ch2s2),
.ch3s2 (mul_ch3s2),
.ch4s2 (mul_ch4s2),
.ch5s2 (mul_ch5s2),
.ch0s3 (mul_ch0s3),
.ch1s3 (mul_ch1s3),
.ch2s3 (mul_ch2s3),
.ch3s3 (mul_ch3s3),
.ch4s3 (mul_ch4s3),
.ch5s3 (mul_ch5s3),
.ch0s4 (mul_ch0s4),
.ch1s4 (mul_ch1s4),
.ch2s4 (mul_ch2s4),
.ch3s4 (mul_ch3s4),
.ch4s4 (mul_ch4s4),
.ch5s4 (mul_ch5s4)
);
wire [6:0] tl_ch0s1, tl_ch1s1, tl_ch2s1, tl_ch3s1,
tl_ch4s1, tl_ch5s1, tl_ch0s2, tl_ch1s2,
tl_ch2s2, tl_ch3s2, tl_ch4s2, tl_ch5s2,
tl_ch0s3, tl_ch1s3, tl_ch2s3, tl_ch3s3,
tl_ch4s3, tl_ch5s3, tl_ch0s4, tl_ch1s4,
tl_ch2s4, tl_ch3s4, tl_ch4s4, tl_ch5s4;
sep24 #( .width(7), .pos0(19) ) tl_step
(
.clk ( clk ),
.mixed ( tl_VII ),
.mask ( 7'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (tl_ch0s1),
.ch1s1 (tl_ch1s1),
.ch2s1 (tl_ch2s1),
.ch3s1 (tl_ch3s1),
.ch4s1 (tl_ch4s1),
.ch5s1 (tl_ch5s1),
.ch0s2 (tl_ch0s2),
.ch1s2 (tl_ch1s2),
.ch2s2 (tl_ch2s2),
.ch3s2 (tl_ch3s2),
.ch4s2 (tl_ch4s2),
.ch5s2 (tl_ch5s2),
.ch0s3 (tl_ch0s3),
.ch1s3 (tl_ch1s3),
.ch2s3 (tl_ch2s3),
.ch3s3 (tl_ch3s3),
.ch4s3 (tl_ch4s3),
.ch5s3 (tl_ch5s3),
.ch0s4 (tl_ch0s4),
.ch1s4 (tl_ch1s4),
.ch2s4 (tl_ch2s4),
.ch3s4 (tl_ch3s4),
.ch4s4 (tl_ch4s4),
.ch5s4 (tl_ch5s4)
);
wire [4:0] ar_ch0s1, ar_ch1s1, ar_ch2s1, ar_ch3s1,
ar_ch4s1, ar_ch5s1, ar_ch0s2, ar_ch1s2,
ar_ch2s2, ar_ch3s2, ar_ch4s2, ar_ch5s2,
ar_ch0s3, ar_ch1s3, ar_ch2s3, ar_ch3s3,
ar_ch4s3, ar_ch5s3, ar_ch0s4, ar_ch1s4,
ar_ch2s4, ar_ch3s4, ar_ch4s4, ar_ch5s4;
sep24 #( .width(5), .pos0(0) ) ar_step
(
.clk ( clk ),
.mixed ( ar_II ),
.mask ( 5'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (ar_ch0s1),
.ch1s1 (ar_ch1s1),
.ch2s1 (ar_ch2s1),
.ch3s1 (ar_ch3s1),
.ch4s1 (ar_ch4s1),
.ch5s1 (ar_ch5s1),
.ch0s2 (ar_ch0s2),
.ch1s2 (ar_ch1s2),
.ch2s2 (ar_ch2s2),
.ch3s2 (ar_ch3s2),
.ch4s2 (ar_ch4s2),
.ch5s2 (ar_ch5s2),
.ch0s3 (ar_ch0s3),
.ch1s3 (ar_ch1s3),
.ch2s3 (ar_ch2s3),
.ch3s3 (ar_ch3s3),
.ch4s3 (ar_ch4s3),
.ch5s3 (ar_ch5s3),
.ch0s4 (ar_ch0s4),
.ch1s4 (ar_ch1s4),
.ch2s4 (ar_ch2s4),
.ch3s4 (ar_ch3s4),
.ch4s4 (ar_ch4s4),
.ch5s4 (ar_ch5s4)
);
wire [4:0] d1r_ch0s1, d1r_ch1s1, d1r_ch2s1, d1r_ch3s1,
d1r_ch4s1, d1r_ch5s1, d1r_ch0s2, d1r_ch1s2,
d1r_ch2s2, d1r_ch3s2, d1r_ch4s2, d1r_ch5s2,
d1r_ch0s3, d1r_ch1s3, d1r_ch2s3, d1r_ch3s3,
d1r_ch4s3, d1r_ch5s3, d1r_ch0s4, d1r_ch1s4,
d1r_ch2s4, d1r_ch3s4, d1r_ch4s4, d1r_ch5s4;
sep24 #( .width(5), .pos0(0) ) d1r_step
(
.clk ( clk ),
.mixed ( d1r_II ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (d1r_ch0s1),
.ch1s1 (d1r_ch1s1),
.ch2s1 (d1r_ch2s1),
.ch3s1 (d1r_ch3s1),
.ch4s1 (d1r_ch4s1),
.ch5s1 (d1r_ch5s1),
.ch0s2 (d1r_ch0s2),
.ch1s2 (d1r_ch1s2),
.ch2s2 (d1r_ch2s2),
.ch3s2 (d1r_ch3s2),
.ch4s2 (d1r_ch4s2),
.ch5s2 (d1r_ch5s2),
.ch0s3 (d1r_ch0s3),
.ch1s3 (d1r_ch1s3),
.ch2s3 (d1r_ch2s3),
.ch3s3 (d1r_ch3s3),
.ch4s3 (d1r_ch4s3),
.ch5s3 (d1r_ch5s3),
.ch0s4 (d1r_ch0s4),
.ch1s4 (d1r_ch1s4),
.ch2s4 (d1r_ch2s4),
.ch3s4 (d1r_ch3s4),
.ch4s4 (d1r_ch4s4),
.ch5s4 (d1r_ch5s4)
);
wire [4:0] d2r_ch0s1, d2r_ch1s1, d2r_ch2s1, d2r_ch3s1,
d2r_ch4s1, d2r_ch5s1, d2r_ch0s2, d2r_ch1s2,
d2r_ch2s2, d2r_ch3s2, d2r_ch4s2, d2r_ch5s2,
d2r_ch0s3, d2r_ch1s3, d2r_ch2s3, d2r_ch3s3,
d2r_ch4s3, d2r_ch5s3, d2r_ch0s4, d2r_ch1s4,
d2r_ch2s4, d2r_ch3s4, d2r_ch4s4, d2r_ch5s4;
sep24 #( .width(5), .pos0(0) ) d2r_step
(
.clk ( clk ),
.mixed ( d2r_II ),
.mask ( 5'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (d2r_ch0s1),
.ch1s1 (d2r_ch1s1),
.ch2s1 (d2r_ch2s1),
.ch3s1 (d2r_ch3s1),
.ch4s1 (d2r_ch4s1),
.ch5s1 (d2r_ch5s1),
.ch0s2 (d2r_ch0s2),
.ch1s2 (d2r_ch1s2),
.ch2s2 (d2r_ch2s2),
.ch3s2 (d2r_ch3s2),
.ch4s2 (d2r_ch4s2),
.ch5s2 (d2r_ch5s2),
.ch0s3 (d2r_ch0s3),
.ch1s3 (d2r_ch1s3),
.ch2s3 (d2r_ch2s3),
.ch3s3 (d2r_ch3s3),
.ch4s3 (d2r_ch4s3),
.ch5s3 (d2r_ch5s3),
.ch0s4 (d2r_ch0s4),
.ch1s4 (d2r_ch1s4),
.ch2s4 (d2r_ch2s4),
.ch3s4 (d2r_ch3s4),
.ch4s4 (d2r_ch4s4),
.ch5s4 (d2r_ch5s4)
);
wire [3:0] rr_ch0s1, rr_ch1s1, rr_ch2s1, rr_ch3s1,
rr_ch4s1, rr_ch5s1, rr_ch0s2, rr_ch1s2,
rr_ch2s2, rr_ch3s2, rr_ch4s2, rr_ch5s2,
rr_ch0s3, rr_ch1s3, rr_ch2s3, rr_ch3s3,
rr_ch4s3, rr_ch5s3, rr_ch0s4, rr_ch1s4,
rr_ch2s4, rr_ch3s4, rr_ch4s4, rr_ch5s4;
sep24 #( .width(4), .pos0(0) ) rr_step
(
.clk ( clk ),
.mixed ( rr_II ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (rr_ch0s1),
.ch1s1 (rr_ch1s1),
.ch2s1 (rr_ch2s1),
.ch3s1 (rr_ch3s1),
.ch4s1 (rr_ch4s1),
.ch5s1 (rr_ch5s1),
.ch0s2 (rr_ch0s2),
.ch1s2 (rr_ch1s2),
.ch2s2 (rr_ch2s2),
.ch3s2 (rr_ch3s2),
.ch4s2 (rr_ch4s2),
.ch5s2 (rr_ch5s2),
.ch0s3 (rr_ch0s3),
.ch1s3 (rr_ch1s3),
.ch2s3 (rr_ch2s3),
.ch3s3 (rr_ch3s3),
.ch4s3 (rr_ch4s3),
.ch5s3 (rr_ch5s3),
.ch0s4 (rr_ch0s4),
.ch1s4 (rr_ch1s4),
.ch2s4 (rr_ch2s4),
.ch3s4 (rr_ch3s4),
.ch4s4 (rr_ch4s4),
.ch5s4 (rr_ch5s4)
);
wire [3:0] d1l_ch0s1, d1l_ch1s1, d1l_ch2s1, d1l_ch3s1,
d1l_ch4s1, d1l_ch5s1, d1l_ch0s2, d1l_ch1s2,
d1l_ch2s2, d1l_ch3s2, d1l_ch4s2, d1l_ch5s2,
d1l_ch0s3, d1l_ch1s3, d1l_ch2s3, d1l_ch3s3,
d1l_ch4s3, d1l_ch5s3, d1l_ch0s4, d1l_ch1s4,
d1l_ch2s4, d1l_ch3s4, d1l_ch4s4, d1l_ch5s4;
sep24 #( .width(4), .pos0(1) ) d1l_step
(
.clk ( clk ),
.mixed ( d1l ),
.mask ( 4'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (d1l_ch0s1),
.ch1s1 (d1l_ch1s1),
.ch2s1 (d1l_ch2s1),
.ch3s1 (d1l_ch3s1),
.ch4s1 (d1l_ch4s1),
.ch5s1 (d1l_ch5s1),
.ch0s2 (d1l_ch0s2),
.ch1s2 (d1l_ch1s2),
.ch2s2 (d1l_ch2s2),
.ch3s2 (d1l_ch3s2),
.ch4s2 (d1l_ch4s2),
.ch5s2 (d1l_ch5s2),
.ch0s3 (d1l_ch0s3),
.ch1s3 (d1l_ch1s3),
.ch2s3 (d1l_ch2s3),
.ch3s3 (d1l_ch3s3),
.ch4s3 (d1l_ch4s3),
.ch5s3 (d1l_ch5s3),
.ch0s4 (d1l_ch0s4),
.ch1s4 (d1l_ch1s4),
.ch2s4 (d1l_ch2s4),
.ch3s4 (d1l_ch3s4),
.ch4s4 (d1l_ch4s4),
.ch5s4 (d1l_ch5s4)
);
wire [1:0] ks_ch0s1, ks_ch1s1, ks_ch2s1, ks_ch3s1,
ks_ch4s1, ks_ch5s1, ks_ch0s2, ks_ch1s2,
ks_ch2s2, ks_ch3s2, ks_ch4s2, ks_ch5s2,
ks_ch0s3, ks_ch1s3, ks_ch2s3, ks_ch3s3,
ks_ch4s3, ks_ch5s3, ks_ch0s4, ks_ch1s4,
ks_ch2s4, ks_ch3s4, ks_ch4s4, ks_ch5s4;
sep24 #( .width(2), .pos0(23) ) ks_step
(
.clk ( clk ),
.mixed ( ks_III ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (ks_ch0s1),
.ch1s1 (ks_ch1s1),
.ch2s1 (ks_ch2s1),
.ch3s1 (ks_ch3s1),
.ch4s1 (ks_ch4s1),
.ch5s1 (ks_ch5s1),
.ch0s2 (ks_ch0s2),
.ch1s2 (ks_ch1s2),
.ch2s2 (ks_ch2s2),
.ch3s2 (ks_ch3s2),
.ch4s2 (ks_ch4s2),
.ch5s2 (ks_ch5s2),
.ch0s3 (ks_ch0s3),
.ch1s3 (ks_ch1s3),
.ch2s3 (ks_ch2s3),
.ch3s3 (ks_ch3s3),
.ch4s3 (ks_ch4s3),
.ch5s3 (ks_ch5s3),
.ch0s4 (ks_ch0s4),
.ch1s4 (ks_ch1s4),
.ch2s4 (ks_ch2s4),
.ch3s4 (ks_ch3s4),
.ch4s4 (ks_ch4s4),
.ch5s4 (ks_ch5s4)
);
wire [3:0] ssg_II = {ssg_en_II, ssg_eg_II};
wire [3:0] ssg_ch0s1, ssg_ch1s1, ssg_ch2s1, ssg_ch3s1,
ssg_ch4s1, ssg_ch5s1, ssg_ch0s2, ssg_ch1s2,
ssg_ch2s2, ssg_ch3s2, ssg_ch4s2, ssg_ch5s2,
ssg_ch0s3, ssg_ch1s3, ssg_ch2s3, ssg_ch3s3,
ssg_ch4s3, ssg_ch5s3, ssg_ch0s4, ssg_ch1s4,
ssg_ch2s4, ssg_ch3s4, ssg_ch4s4, ssg_ch5s4;
sep24 #( .width(4), .pos0(0) ) ssg_step
(
.clk ( clk ),
.mixed ( ssg_II ),
.mask ( 4'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (ssg_ch0s1),
.ch1s1 (ssg_ch1s1),
.ch2s1 (ssg_ch2s1),
.ch3s1 (ssg_ch3s1),
.ch4s1 (ssg_ch4s1),
.ch5s1 (ssg_ch5s1),
.ch0s2 (ssg_ch0s2),
.ch1s2 (ssg_ch1s2),
.ch2s2 (ssg_ch2s2),
.ch3s2 (ssg_ch3s2),
.ch4s2 (ssg_ch4s2),
.ch5s2 (ssg_ch5s2),
.ch0s3 (ssg_ch0s3),
.ch1s3 (ssg_ch1s3),
.ch2s3 (ssg_ch2s3),
.ch3s3 (ssg_ch3s3),
.ch4s3 (ssg_ch4s3),
.ch5s3 (ssg_ch5s3),
.ch0s4 (ssg_ch0s4),
.ch1s4 (ssg_ch1s4),
.ch2s4 (ssg_ch2s4),
.ch3s4 (ssg_ch3s4),
.ch4s4 (ssg_ch4s4),
.ch5s4 (ssg_ch5s4)
);
wire kon_ch0s1, kon_ch1s1, kon_ch2s1, kon_ch3s1,
kon_ch4s1, kon_ch5s1, kon_ch0s2, kon_ch1s2,
kon_ch2s2, kon_ch3s2, kon_ch4s2, kon_ch5s2,
kon_ch0s3, kon_ch1s3, kon_ch2s3, kon_ch3s3,
kon_ch4s3, kon_ch5s3, kon_ch0s4, kon_ch1s4,
kon_ch2s4, kon_ch3s4, kon_ch4s4, kon_ch5s4;
sep24 #( .width(1), .pos0(0) ) konstep
(
.clk ( clk ),
.mixed ( keyon_II ),
.mask ( 1'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (kon_ch0s1),
.ch1s1 (kon_ch1s1),
.ch2s1 (kon_ch2s1),
.ch3s1 (kon_ch3s1),
.ch4s1 (kon_ch4s1),
.ch5s1 (kon_ch5s1),
.ch0s2 (kon_ch0s2),
.ch1s2 (kon_ch1s2),
.ch2s2 (kon_ch2s2),
.ch3s2 (kon_ch3s2),
.ch4s2 (kon_ch4s2),
.ch5s2 (kon_ch5s2),
.ch0s3 (kon_ch0s3),
.ch1s3 (kon_ch1s3),
.ch2s3 (kon_ch2s3),
.ch3s3 (kon_ch3s3),
.ch4s3 (kon_ch4s3),
.ch5s3 (kon_ch5s3),
.ch0s4 (kon_ch0s4),
.ch1s4 (kon_ch1s4),
.ch2s4 (kon_ch2s4),
.ch3s4 (kon_ch3s4),
.ch4s4 (kon_ch4s4),
.ch5s4 (kon_ch5s4)
);
/* Dump all registers on request */
integer fmmr;
initial begin
fmmr=$fopen("mmr_dump.log");
end
always @(posedge clk )
if (mmr_dump ) begin
$fdisplay( fmmr, "-------------------------------");
// Channel 0
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch0s1, fnum_ch0s1, rl_ch0s1, fb_ch0s1, alg_ch0s1,
dt1_ch0s1, mul_ch0s1, tl_ch0s1, ar_ch0s1, d1r_ch0s1,
d2r_ch0s1, rr_ch0s1, d1l_ch0s1, ks_ch0s1, ssg_ch0s1,
kon_ch0s1 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch0s2, fnum_ch0s2, rl_ch0s2, fb_ch0s2, alg_ch0s2,
dt1_ch0s2, mul_ch0s2, tl_ch0s2, ar_ch0s2, d1r_ch0s2,
d2r_ch0s2, rr_ch0s2, d1l_ch0s2, ks_ch0s2, ssg_ch0s2,
kon_ch0s2 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch0s1, fnum_ch0s3, rl_ch0s3, fb_ch0s3, alg_ch0s3,
dt1_ch0s3, mul_ch0s3, tl_ch0s3, ar_ch0s3, d1r_ch0s3,
d2r_ch0s3, rr_ch0s3, d1l_ch0s3, ks_ch0s3, ssg_ch0s3,
kon_ch0s3 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch0s4, fnum_ch0s4, rl_ch0s4, fb_ch0s4, alg_ch0s4,
dt1_ch0s4, mul_ch0s4, tl_ch0s4, ar_ch0s4, d1r_ch0s4,
d2r_ch0s4, rr_ch0s4, d1l_ch0s4, ks_ch0s4, ssg_ch0s4,
kon_ch0s4 );
// Channel 1
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch1s1, fnum_ch1s1, rl_ch1s1, fb_ch1s1, alg_ch1s1,
dt1_ch1s1, mul_ch1s1, tl_ch1s1, ar_ch1s1, d1r_ch1s1,
d2r_ch1s1, rr_ch1s1, d1l_ch1s1, ks_ch1s1, ssg_ch1s1,
kon_ch1s1 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch1s2, fnum_ch1s2, rl_ch1s2, fb_ch1s2, alg_ch1s2,
dt1_ch1s2, mul_ch1s2, tl_ch1s2, ar_ch1s2, d1r_ch1s2,
d2r_ch1s2, rr_ch1s2, d1l_ch1s2, ks_ch1s2, ssg_ch1s2,
kon_ch1s2 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch1s3, fnum_ch1s3, rl_ch1s3, fb_ch1s3, alg_ch1s3,
dt1_ch1s3, mul_ch1s3, tl_ch1s3, ar_ch1s3, d1r_ch1s3,
d2r_ch1s3, rr_ch1s3, d1l_ch1s3, ks_ch1s3, ssg_ch1s3,
kon_ch1s3 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch1s4, fnum_ch1s4, rl_ch1s4, fb_ch1s4, alg_ch1s4,
dt1_ch1s4, mul_ch1s4, tl_ch1s4, ar_ch1s4, d1r_ch1s4,
d2r_ch1s4, rr_ch1s4, d1l_ch1s4, ks_ch1s4, ssg_ch1s4,
kon_ch1s4 );
// Channel 2
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch2s1, fnum_ch2s1, rl_ch2s1, fb_ch2s1, alg_ch2s1,
dt1_ch2s1, mul_ch2s1, tl_ch2s1, ar_ch2s1, d1r_ch2s1,
d2r_ch2s1, rr_ch2s1, d1l_ch2s1, ks_ch2s1, ssg_ch2s1,
kon_ch2s1 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch2s2, fnum_ch2s2, rl_ch2s2, fb_ch2s2, alg_ch2s2,
dt1_ch2s2, mul_ch2s2, tl_ch2s2, ar_ch2s2, d1r_ch2s2,
d2r_ch2s2, rr_ch2s2, d1l_ch2s2, ks_ch2s2, ssg_ch2s2,
kon_ch2s2 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch2s3, fnum_ch2s3, rl_ch2s3, fb_ch2s3, alg_ch2s3,
dt1_ch2s3, mul_ch2s3, tl_ch2s3, ar_ch2s3, d1r_ch2s3,
d2r_ch2s3, rr_ch2s3, d1l_ch2s3, ks_ch2s3, ssg_ch2s3,
kon_ch2s3 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch2s4, fnum_ch2s4, rl_ch2s4, fb_ch2s4, alg_ch2s4,
dt1_ch2s4, mul_ch2s4, tl_ch2s4, ar_ch2s4, d1r_ch2s4,
d2r_ch2s4, rr_ch2s4, d1l_ch2s4, ks_ch2s4, ssg_ch2s4,
kon_ch2s4 );
// Channel 3
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch3s1, fnum_ch3s1, rl_ch3s1, fb_ch3s1, alg_ch3s1,
dt1_ch3s1, mul_ch3s1, tl_ch3s1, ar_ch3s1, d1r_ch3s1,
d2r_ch3s1, rr_ch3s1, d1l_ch3s1, ks_ch3s1, ssg_ch3s1,
kon_ch3s1 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch3s2, fnum_ch3s2, rl_ch3s2, fb_ch3s2, alg_ch3s2,
dt1_ch3s2, mul_ch3s2, tl_ch3s2, ar_ch3s2, d1r_ch3s2,
d2r_ch3s2, rr_ch3s2, d1l_ch3s2, ks_ch3s2, ssg_ch3s2,
kon_ch3s2 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch3s3, fnum_ch3s3, rl_ch3s3, fb_ch3s3, alg_ch3s3,
dt1_ch3s3, mul_ch3s3, tl_ch3s3, ar_ch3s3, d1r_ch3s3,
d2r_ch3s3, rr_ch3s3, d1l_ch3s3, ks_ch3s3, ssg_ch3s3,
kon_ch3s3 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch3s4, fnum_ch3s4, rl_ch3s4, fb_ch3s4, alg_ch3s4,
dt1_ch3s4, mul_ch3s4, tl_ch3s4, ar_ch3s4, d1r_ch3s4,
d2r_ch3s4, rr_ch3s4, d1l_ch3s4, ks_ch3s4, ssg_ch3s4,
kon_ch3s4 );
// Channel 4
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch4s1, fnum_ch4s1, rl_ch4s1, fb_ch4s1, alg_ch4s1,
dt1_ch4s1, mul_ch4s1, tl_ch4s1, ar_ch4s1, d1r_ch4s1,
d2r_ch4s1, rr_ch4s1, d1l_ch4s1, ks_ch4s1, ssg_ch4s1,
kon_ch4s1 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch4s2, fnum_ch4s2, rl_ch4s2, fb_ch4s2, alg_ch4s2,
dt1_ch4s2, mul_ch4s2, tl_ch4s2, ar_ch4s2, d1r_ch4s2,
d2r_ch4s2, rr_ch4s2, d1l_ch4s2, ks_ch4s2, ssg_ch4s2,
kon_ch4s2 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch4s3, fnum_ch4s3, rl_ch4s3, fb_ch4s3, alg_ch4s3,
dt1_ch4s3, mul_ch4s3, tl_ch4s3, ar_ch4s3, d1r_ch4s3,
d2r_ch4s3, rr_ch4s3, d1l_ch4s3, ks_ch4s3, ssg_ch4s3,
kon_ch4s3 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch4s4, fnum_ch4s4, rl_ch4s4, fb_ch4s4, alg_ch4s4,
dt1_ch4s4, mul_ch4s4, tl_ch4s4, ar_ch4s4, d1r_ch4s4,
d2r_ch4s4, rr_ch4s4, d1l_ch4s4, ks_ch4s4, ssg_ch4s4,
kon_ch4s4 );
// Channel 5
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch5s1, fnum_ch5s1, rl_ch5s1, fb_ch5s1, alg_ch5s1,
dt1_ch5s1, mul_ch5s1, tl_ch5s1, ar_ch5s1, d1r_ch5s1,
d2r_ch5s1, rr_ch5s1, d1l_ch5s1, ks_ch5s1, ssg_ch5s1,
kon_ch5s1 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch5s2, fnum_ch5s2, rl_ch5s2, fb_ch5s2, alg_ch5s2,
dt1_ch5s2, mul_ch5s2, tl_ch5s2, ar_ch5s2, d1r_ch5s2,
d2r_ch5s2, rr_ch5s2, d1l_ch5s2, ks_ch5s2, ssg_ch5s2,
kon_ch5s2 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch5s3, fnum_ch5s3, rl_ch5s3, fb_ch5s3, alg_ch5s3,
dt1_ch5s3, mul_ch5s3, tl_ch5s3, ar_ch5s3, d1r_ch5s3,
d2r_ch5s3, rr_ch5s3, d1l_ch5s3, ks_ch5s3, ssg_ch5s3,
kon_ch5s3 );
$fdisplay( fmmr, "%x %x %x %x %x, %x %x %x %x %x %x, %x %x %x %x %x",
block_ch5s4, fnum_ch5s4, rl_ch5s4, fb_ch5s4, alg_ch5s4,
dt1_ch5s4, mul_ch5s4, tl_ch5s4, ar_ch5s4, d1r_ch5s4,
d2r_ch5s4, rr_ch5s4, d1l_ch5s4, ks_ch5s4, ssg_ch5s4,
kon_ch5s4 );
end
`endif

122
src/sound/jt12/jt12_mod.v Normal file
View File

@ -0,0 +1,122 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
module jt12_mod(
input s1_enters,
input s2_enters,
input s3_enters,
input s4_enters,
input [2:0] alg_I,
output reg use_prevprev1,
output reg use_internal_x,
output reg use_internal_y,
output reg use_prev2,
output reg use_prev1
);
reg [7:0] alg_hot;
always @(*) begin
case( alg_I )
3'd0: alg_hot <= 8'h1; // D0
3'd1: alg_hot <= 8'h2; // D1
3'd2: alg_hot <= 8'h4; // D2
3'd3: alg_hot <= 8'h8; // D3
3'd4: alg_hot <= 8'h10; // D4
3'd5: alg_hot <= 8'h20; // D5
3'd6: alg_hot <= 8'h40; // D6
3'd7: alg_hot <= 8'h80; // D7
endcase
end
always @(*) begin
use_prevprev1 <= s1_enters | (s3_enters&alg_hot[5]);
use_prev2 <= (s3_enters&(|alg_hot[2:0])) | (s4_enters&alg_hot[3]);
use_internal_x <= s4_enters & alg_hot[2];
use_internal_y <= s4_enters & (|{alg_hot[4:3],alg_hot[1:0]});
use_prev1 <= s1_enters | (s3_enters&alg_hot[1]) |
(s2_enters&(|{alg_hot[6:3],alg_hot[0]}) )|
(s4_enters&(|{alg_hot[5],alg_hot[2]}));
end
/*
always @(*) begin
use_prevprev1 <= s1_enters || (s3_enters&&(alg_I==3'd5));
use_prev2 <= (s3_enters&&(alg_I<=3'd2)) || (s4_enters&&(alg_I==3'd3));
use_internal_x <= s4_enters && (alg_I==3'd2);
use_internal_y <= s4_enters && (alg_I<=3'd4 && alg_I!=3'd2);
use_prev1 <= s1_enters || (s3_enters&&(alg_I==3'd1)) ||
(s2_enters&&(alg_I==3'd0 ||
alg_I==3'd3 || alg_I==3'd4 ||
alg_I==3'd5 || alg_I==3'd6)) ||
(s4_enters&&(alg_I==3'd2 || alg_I==3'd5));
end
always @(*) begin
case( {s1_enters, s3_enters, s2_enters, s4_enters} ) // synthesis parallel_case
4'b1000: begin // S1
use_prevprev1 <= 1'b1;
use_prev2 <= 1'b0;
use_internal_x<= 1'b0;
use_internal_y<= 1'b0;
use_prev1 <= 1'b1;
end
4'b0100: begin // S3
use_prevprev1 <= alg_I==3'd5;
use_prev2 <= (alg_I<=3'd2);
use_internal_x<= 1'b0;
use_internal_y<= 1'b0;
use_prev1 <= alg_I==3'd1;
end
4'b0010: begin // S2
use_prevprev1 <= 1'b0;
use_prev2 <= 1'b0;
use_internal_x<= 1'b0;
use_prev1 <= (alg_I==3'd0 ||
alg_I==3'd3 || alg_I==3'd4 ||
alg_I==3'd5 || alg_I==3'd6 );
use_internal_y<= 1'b0;
end
4'b0001: begin // S4
use_prevprev1 <= 1'b0;
use_prev2 <= ( alg_I==3'd3 );
use_internal_x <= alg_I==3'd2;
use_prev1 <= (alg_I==3'd2 || alg_I==3'd5);
use_internal_y <= ( alg_I<=3'd4 && alg_I!=3'd2);
end
default:begin
use_prevprev1 <= 1'bx;
use_prev2 <= 1'bx;
use_internal_x<= 1'bx;
use_prev1 <= 1'bx;
use_internal_y<= 1'bx;
end
endcase
end
*/
endmodule

536
src/sound/jt12/jt12_op.v Normal file
View File

@ -0,0 +1,536 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
module jt12_op(
input rst,
input clk,
input [9:0] pg_phase_VIII,
input [9:0] eg_atten_IX, // output from envelope generator
input [2:0] fb_II, // voice feedback
input use_prevprev1,
input use_internal_x,
input use_internal_y,
input use_prev2,
input use_prev1,
input test_214,
input s1_enters,
input s2_enters,
input s3_enters,
input s4_enters,
input zero,
output signed [8:0] op_result
);
/* enters exits
S1 S2
S3 S4
S2 S1
S4 S3
*/
reg [13:0] op_result_internal, op_XII;
reg [11:0] atten_internal_IX;
assign op_result = op_result_internal[13:5];
parameter NUM_VOICES = 6;
reg signbit_IX, signbit_X, signbit_XI;
reg [11:0] totalatten_X;
wire [13:0] prev1, prevprev1, prev2;
jt12_sh/*_rst*/ #( .width(14), .stages(NUM_VOICES)) prev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.din ( s2_enters ? op_result_internal : prev1 ),
.drop ( prev1 )
);
jt12_sh/*_rst*/ #( .width(14), .stages(NUM_VOICES)) prevprev1_buffer(
// .rst ( rst ),
.clk ( clk ),
.din ( s2_enters ? prev1 : prevprev1 ),
.drop ( prevprev1 )
);
jt12_sh/*_rst*/ #( .width(14), .stages(NUM_VOICES)) prev2_buffer(
// .rst ( rst ),
.clk ( clk ),
.din ( s1_enters ? op_result_internal : prev2 ),
.drop ( prev2 )
);
reg [18:0] stb;
reg [10:0] stf, stg;
reg [11:0] logsin;
reg [10:0] subtresult;
reg [12:0] etb;
reg [ 9:0] etf, etg, mantissa_XI;
reg [ 3:0] exponent_XI;
reg [12:0] shifter, shifter_2, shifter_3;
// REGISTER/CYCLE 1
// Creation of phase modulation (FM) feedback signal, before shifting
reg [13:0] x, y;
reg [14:0] xs, ys, pm_preshift_II;
reg s1_II;
always @(*) begin
x <= ( {14{use_prevprev1}} & prevprev1 ) |
( {14{use_internal_x}} & op_result_internal ) |
( {14{use_prev2}} & prev2 );
y <= ( {14{use_prev1}} & prev1 ) |
( {14{use_internal_y}} & op_result_internal );
xs <= { x[13], x }; // sign-extend
ys <= { y[13], y }; // sign-extend
end
always @(posedge clk) begin
pm_preshift_II <= xs + ys; // carry is discarded
s1_II <= s1_enters;
end
/* REGISTER/CYCLE 2-7 (also YM2612 extra cycles 1-6)
Shifting of FM feedback signal, adding phase from PG to FM phase
In YM2203, phasemod_II is not registered at all, it is latched on the first edge
in add_pg_phase and the second edge is the output of add_pg_phase. In the YM2612, there
are 6 cycles worth of registers between the generated (non-registered) phasemod_II signal
and the input to add_pg_phase. */
reg [9:0] phasemod_II;
wire [9:0] phasemod_VIII;
always @(*) begin
// Shift FM feedback signal
if (!s1_II ) // Not S1
phasemod_II <= pm_preshift_II[10:1]; // Bit 0 of pm_preshift_II is never used
else // S1
case( fb_II )
3'd0: phasemod_II <= 10'd0;
3'd1: phasemod_II <= { {4{pm_preshift_II[14]}}, pm_preshift_II[14:9] };
3'd2: phasemod_II <= { {3{pm_preshift_II[14]}}, pm_preshift_II[14:8] };
3'd3: phasemod_II <= { {2{pm_preshift_II[14]}}, pm_preshift_II[14:7] };
3'd4: phasemod_II <= { pm_preshift_II[14], pm_preshift_II[14:6] };
3'd5: phasemod_II <= pm_preshift_II[14:5];
3'd6: phasemod_II <= pm_preshift_II[13:4];
3'd7: phasemod_II <= pm_preshift_II[12:3];
endcase
end
// REGISTER/CYCLE 2-7
jt12_sh #( .width(10), .stages(NUM_VOICES)) phasemod_sh(
.clk ( clk ),
.din ( phasemod_II ),
.drop ( phasemod_VIII )
);
// REGISTER/CYCLE 8
reg [ 9:0] phase;
// Sets the maximum number of fanouts for a register or combinational
// cell. The Quartus II software will replicate the cell and split
// the fanouts among the duplicates until the fanout of each cell
// is below the maximum.
reg [ 7:0] phaselo_IX, aux_VIII;
always @(*) begin
phase <= phasemod_VIII + pg_phase_VIII;
aux_VIII<= phase[7:0] ^ {8{~phase[8]}};
end
always @(posedge clk) begin
phaselo_IX <= aux_VIII;
signbit_IX <= phase[9];
end
wire [45:0] sta_IX;
jt12_phrom u_phrom(
.clk ( clk ),
.addr ( aux_VIII[5:1] ),
.ph ( sta_IX )
);
// REGISTER/CYCLE 9
// Sine table
// Main sine table body
always @(*) begin
//sta_IX <= sinetable[ phaselo_IX[5:1] ];
// 2-bit row chooser
case( phaselo_IX[7:6] )
2'b00: stb <= { 10'b0, sta_IX[29], sta_IX[25], 2'b0, sta_IX[18],
sta_IX[14], 1'b0, sta_IX[7] , sta_IX[3] };
2'b01: stb <= { 6'b0 , sta_IX[37], sta_IX[34], 2'b0, sta_IX[28],
sta_IX[24], 2'b0, sta_IX[17], sta_IX[13], sta_IX[10], sta_IX[6], sta_IX[2] };
2'b10: stb <= { 2'b0, sta_IX[43], sta_IX[41], 2'b0, sta_IX[36],
sta_IX[33], 2'b0, sta_IX[27], sta_IX[23], 1'b0, sta_IX[20],
sta_IX[16], sta_IX[12], sta_IX[9], sta_IX[5], sta_IX[1] };
default: stb <= {
sta_IX[45], sta_IX[44], sta_IX[42], sta_IX[40]
, sta_IX[39], sta_IX[38], sta_IX[35], sta_IX[32]
, sta_IX[31], sta_IX[30], sta_IX[26], sta_IX[22]
, sta_IX[21], sta_IX[19], sta_IX[15], sta_IX[11]
, sta_IX[8], sta_IX[4], sta_IX[0] };
endcase
// Fixed value to sum
stf <= { stb[18:15], stb[12:11], stb[8:7], stb[4:3], stb[0] };
// Gated value to sum; bit 14 is indeed used twice
if( phaselo_IX[0] )
stg <= { 2'b0, stb[14], stb[14:13], stb[10:9], stb[6:5], stb[2:1] };
else
stg <= 11'd0;
// Sum to produce final logsin value
logsin <= stf + stg; // Carry-out of 11-bit addition becomes 12th bit
// Invert-subtract logsin value from EG attenuation value, with inverted carry
// In the actual chip, the output of the above logsin sum is already inverted.
// The two LSBs go through inverters (so they're non-inverted); the eg_atten_IX signal goes through inverters.
// The adder is normal except the carry-in is 1. It's a 10-bit adder.
// The outputs are inverted outputs, including the carry bit.
//subtresult <= not (('0' & not eg_atten_IX) - ('1' & logsin([11:2])));
// After a little pencil-and-paper, turns out this is equivalent to a regular adder!
subtresult <= eg_atten_IX + logsin[11:2];
// Place all but carry bit into result; also two LSBs of logsin
// If addition overflowed, make it the largest value (saturate)
atten_internal_IX <= { subtresult[9:0], logsin[1:0] } | {12{subtresult[10]}};
end
wire [44:0] exp_X;
jt12_exprom u_exprom(
.clk ( clk ),
.addr ( atten_internal_IX[5:1] ),
.exp ( exp_X )
);
always @(posedge clk) begin
totalatten_X <= atten_internal_IX;
signbit_X <= signbit_IX;
end
//wire [1:0] et_sel = totalatten_X[7:6];
//wire [4:0] et_fine = totalatten_X[5:1];
// REGISTER/CYCLE 10
// Exponential table
// Main sine table body
always @(*) begin
//eta <= explut_jt51[ totalatten_X[5:1] ];
// 2-bit row chooser
case( totalatten_X[7:6] )
2'b00: begin
etf <= { 1'b1, exp_X[44:36] };
etg <= { 1'b1, exp_X[35:34] };
end
2'b01: begin
etf <= exp_X[33:24];
etg <= { 2'b10, exp_X[23] };
end
2'b10: begin
etf <= { 1'b0, exp_X[22:14] };
etg <= exp_X[13:11];
end
2'b11: begin
etf <= { 2'b00, exp_X[10:3] };
etg <= exp_X[2:0];
end
endcase
end
always @(posedge clk) begin
//RESULT
mantissa_XI <= etf + ( totalatten_X[0] ? 3'd0 : etg ); //carry-out discarded
exponent_XI <= totalatten_X[11:8];
signbit_XI <= signbit_X;
end
// REGISTER/CYCLE 11
// Introduce test bit as MSB, 2's complement & Carry-out discarded
always @(*) begin
// Floating-point to integer, and incorporating sign bit
// Two-stage shifting of mantissa_XI by exponent_XI
shifter <= { 3'b001, mantissa_XI };
case( ~exponent_XI[1:0] )
2'b00: shifter_2 <= { 1'b0, shifter[12:1] }; // LSB discarded
2'b01: shifter_2 <= shifter;
2'b10: shifter_2 <= { shifter[11:0], 1'b0 };
2'b11: shifter_2 <= { shifter[10:0], 2'b0 };
endcase
case( ~exponent_XI[3:2] )
2'b00: shifter_3 <= {12'b0, shifter_2[12] };
2'b01: shifter_3 <= { 8'b0, shifter_2[12:8] };
2'b10: shifter_3 <= { 4'b0, shifter_2[12:4] };
2'b11: shifter_3 <= shifter_2;
endcase
end
always @(posedge clk) begin
// REGISTER CYCLE 11
op_XII <= ({ test_214, shifter_3 } ^ {14{signbit_XI}}) + signbit_XI;
// REGISTER CYCLE 12
// Extra register, take output after here
op_result_internal <= op_XII;
end
`ifdef SIMULATION
reg [4:0] sep24_cnt;
wire signed [13:0] op_ch0s1, op_ch1s1, op_ch2s1, op_ch3s1,
op_ch4s1, op_ch5s1, op_ch0s2, op_ch1s2,
op_ch2s2, op_ch3s2, op_ch4s2, op_ch5s2,
op_ch0s3, op_ch1s3, op_ch2s3, op_ch3s3,
op_ch4s3, op_ch5s3, op_ch0s4, op_ch1s4,
op_ch2s4, op_ch3s4, op_ch4s4, op_ch5s4;
always @(posedge clk )
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
sep24 #( .width(14), .pos0(13)) opsep
(
.clk ( clk ),
.mixed ( op_result_internal ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (op_ch0s1),
.ch1s1 (op_ch1s1),
.ch2s1 (op_ch2s1),
.ch3s1 (op_ch3s1),
.ch4s1 (op_ch4s1),
.ch5s1 (op_ch5s1),
.ch0s2 (op_ch0s2),
.ch1s2 (op_ch1s2),
.ch2s2 (op_ch2s2),
.ch3s2 (op_ch3s2),
.ch4s2 (op_ch4s2),
.ch5s2 (op_ch5s2),
.ch0s3 (op_ch0s3),
.ch1s3 (op_ch1s3),
.ch2s3 (op_ch2s3),
.ch3s3 (op_ch3s3),
.ch4s3 (op_ch4s3),
.ch5s3 (op_ch5s3),
.ch0s4 (op_ch0s4),
.ch1s4 (op_ch1s4),
.ch2s4 (op_ch2s4),
.ch3s4 (op_ch3s4),
.ch4s4 (op_ch4s4),
.ch5s4 (op_ch5s4)
);
wire signed [8:0] acc_ch0s1, acc_ch1s1, acc_ch2s1, acc_ch3s1,
acc_ch4s1, acc_ch5s1, acc_ch0s2, acc_ch1s2,
acc_ch2s2, acc_ch3s2, acc_ch4s2, acc_ch5s2,
acc_ch0s3, acc_ch1s3, acc_ch2s3, acc_ch3s3,
acc_ch4s3, acc_ch5s3, acc_ch0s4, acc_ch1s4,
acc_ch2s4, acc_ch3s4, acc_ch4s4, acc_ch5s4;
sep24 #( .width(9), .pos0(13)) accsep
(
.clk ( clk ),
.mixed ( op_result_internal[13:5] ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (acc_ch0s1),
.ch1s1 (acc_ch1s1),
.ch2s1 (acc_ch2s1),
.ch3s1 (acc_ch3s1),
.ch4s1 (acc_ch4s1),
.ch5s1 (acc_ch5s1),
.ch0s2 (acc_ch0s2),
.ch1s2 (acc_ch1s2),
.ch2s2 (acc_ch2s2),
.ch3s2 (acc_ch3s2),
.ch4s2 (acc_ch4s2),
.ch5s2 (acc_ch5s2),
.ch0s3 (acc_ch0s3),
.ch1s3 (acc_ch1s3),
.ch2s3 (acc_ch2s3),
.ch3s3 (acc_ch3s3),
.ch4s3 (acc_ch4s3),
.ch5s3 (acc_ch5s3),
.ch0s4 (acc_ch0s4),
.ch1s4 (acc_ch1s4),
.ch2s4 (acc_ch2s4),
.ch3s4 (acc_ch3s4),
.ch4s4 (acc_ch4s4),
.ch5s4 (acc_ch5s4)
);
wire signed [9:0] pm_ch0s1, pm_ch1s1, pm_ch2s1, pm_ch3s1,
pm_ch4s1, pm_ch5s1, pm_ch0s2, pm_ch1s2,
pm_ch2s2, pm_ch3s2, pm_ch4s2, pm_ch5s2,
pm_ch0s3, pm_ch1s3, pm_ch2s3, pm_ch3s3,
pm_ch4s3, pm_ch5s3, pm_ch0s4, pm_ch1s4,
pm_ch2s4, pm_ch3s4, pm_ch4s4, pm_ch5s4;
sep24 #( .width(10), .pos0( 18 ) ) pmsep
(
.clk ( clk ),
.mixed ( phasemod_VIII ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (pm_ch0s1),
.ch1s1 (pm_ch1s1),
.ch2s1 (pm_ch2s1),
.ch3s1 (pm_ch3s1),
.ch4s1 (pm_ch4s1),
.ch5s1 (pm_ch5s1),
.ch0s2 (pm_ch0s2),
.ch1s2 (pm_ch1s2),
.ch2s2 (pm_ch2s2),
.ch3s2 (pm_ch3s2),
.ch4s2 (pm_ch4s2),
.ch5s2 (pm_ch5s2),
.ch0s3 (pm_ch0s3),
.ch1s3 (pm_ch1s3),
.ch2s3 (pm_ch2s3),
.ch3s3 (pm_ch3s3),
.ch4s3 (pm_ch4s3),
.ch5s3 (pm_ch5s3),
.ch0s4 (pm_ch0s4),
.ch1s4 (pm_ch1s4),
.ch2s4 (pm_ch2s4),
.ch3s4 (pm_ch3s4),
.ch4s4 (pm_ch4s4),
.ch5s4 (pm_ch5s4)
);
wire [9:0] phase_ch0s1, phase_ch1s1, phase_ch2s1, phase_ch3s1,
phase_ch4s1, phase_ch5s1, phase_ch0s2, phase_ch1s2,
phase_ch2s2, phase_ch3s2, phase_ch4s2, phase_ch5s2,
phase_ch0s3, phase_ch1s3, phase_ch2s3, phase_ch3s3,
phase_ch4s3, phase_ch5s3, phase_ch0s4, phase_ch1s4,
phase_ch2s4, phase_ch3s4, phase_ch4s4, phase_ch5s4;
sep24 #( .width(10), .pos0( 18 ) ) phsep
(
.clk ( clk ),
.mixed ( phase ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (phase_ch0s1),
.ch1s1 (phase_ch1s1),
.ch2s1 (phase_ch2s1),
.ch3s1 (phase_ch3s1),
.ch4s1 (phase_ch4s1),
.ch5s1 (phase_ch5s1),
.ch0s2 (phase_ch0s2),
.ch1s2 (phase_ch1s2),
.ch2s2 (phase_ch2s2),
.ch3s2 (phase_ch3s2),
.ch4s2 (phase_ch4s2),
.ch5s2 (phase_ch5s2),
.ch0s3 (phase_ch0s3),
.ch1s3 (phase_ch1s3),
.ch2s3 (phase_ch2s3),
.ch3s3 (phase_ch3s3),
.ch4s3 (phase_ch4s3),
.ch5s3 (phase_ch5s3),
.ch0s4 (phase_ch0s4),
.ch1s4 (phase_ch1s4),
.ch2s4 (phase_ch2s4),
.ch3s4 (phase_ch3s4),
.ch4s4 (phase_ch4s4),
.ch5s4 (phase_ch5s4)
);
wire [9:0] eg_ch0s1, eg_ch1s1, eg_ch2s1, eg_ch3s1, eg_ch4s1, eg_ch5s1,
eg_ch0s2, eg_ch1s2, eg_ch2s2, eg_ch3s2, eg_ch4s2, eg_ch5s2,
eg_ch0s3, eg_ch1s3, eg_ch2s3, eg_ch3s3, eg_ch4s3, eg_ch5s3,
eg_ch0s4, eg_ch1s4, eg_ch2s4, eg_ch3s4, eg_ch4s4, eg_ch5s4;
sep24 #( .width(10), .pos0(17) ) egsep
(
.clk ( clk ),
.mixed ( eg_atten_IX ),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (eg_ch0s1),
.ch1s1 (eg_ch1s1),
.ch2s1 (eg_ch2s1),
.ch3s1 (eg_ch3s1),
.ch4s1 (eg_ch4s1),
.ch5s1 (eg_ch5s1),
.ch0s2 (eg_ch0s2),
.ch1s2 (eg_ch1s2),
.ch2s2 (eg_ch2s2),
.ch3s2 (eg_ch3s2),
.ch4s2 (eg_ch4s2),
.ch5s2 (eg_ch5s2),
.ch0s3 (eg_ch0s3),
.ch1s3 (eg_ch1s3),
.ch2s3 (eg_ch2s3),
.ch3s3 (eg_ch3s3),
.ch4s3 (eg_ch4s3),
.ch5s3 (eg_ch5s3),
.ch0s4 (eg_ch0s4),
.ch1s4 (eg_ch1s4),
.ch2s4 (eg_ch2s4),
.ch3s4 (eg_ch3s4),
.ch4s4 (eg_ch4s4),
.ch5s4 (eg_ch5s4)
);
`endif
endmodule

View File

@ -0,0 +1,79 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
module jt12_opram
(
input [4:0] wr_addr,
input [4:0] rd_addr,
input clk,
input [43:0] data,
output reg [43:0] q
);
reg [43:0] ram[31:0];
initial
begin
ram[0] = { ~7'd0, 37'd0 };
ram[1] = { ~7'd0, 37'd0 };
ram[2] = { ~7'd0, 37'd0 };
ram[3] = { ~7'd0, 37'd0 };
ram[4] = { ~7'd0, 37'd0 };
ram[5] = { ~7'd0, 37'd0 };
ram[6] = { ~7'd0, 37'd0 };
ram[7] = { ~7'd0, 37'd0 };
ram[8] = { ~7'd0, 37'd0 };
ram[9] = { ~7'd0, 37'd0 };
ram[10] = { ~7'd0, 37'd0 };
ram[11] = { ~7'd0, 37'd0 };
ram[12] = { ~7'd0, 37'd0 };
ram[13] = { ~7'd0, 37'd0 };
ram[14] = { ~7'd0, 37'd0 };
ram[15] = { ~7'd0, 37'd0 };
ram[16] = { ~7'd0, 37'd0 };
ram[17] = { ~7'd0, 37'd0 };
ram[18] = { ~7'd0, 37'd0 };
ram[19] = { ~7'd0, 37'd0 };
ram[20] = { ~7'd0, 37'd0 };
ram[21] = { ~7'd0, 37'd0 };
ram[22] = { ~7'd0, 37'd0 };
ram[23] = { ~7'd0, 37'd0 };
ram[24] = { ~7'd0, 37'd0 };
ram[25] = { ~7'd0, 37'd0 };
ram[26] = { ~7'd0, 37'd0 };
ram[27] = { ~7'd0, 37'd0 };
ram[28] = { ~7'd0, 37'd0 };
ram[29] = { ~7'd0, 37'd0 };
ram[30] = { ~7'd0, 37'd0 };
ram[31] = { ~7'd0, 37'd0 };
end
always @ (posedge clk) begin
q <= ram[rd_addr];
ram[wr_addr] <= data;
end
endmodule

412
src/sound/jt12/jt12_pg.v Normal file
View File

@ -0,0 +1,412 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2016
Based on information posted by Nemesis on:
http://gendev.spritesmind.net/forum/viewtopic.php?t=386&postdays=0&postorder=asc&start=167
Based on jt51_phasegen.v, from JT51
*/
`timescale 1ns / 1ps
/*
tab size 4
*/
module jt12_pg(
input clk,
input rst,
// Channel frequency
input [10:0] fnum_I,
input [ 2:0] block_I,
// Operator multiplying
input [ 3:0] mul_V,
// Operator detuning
input [ 2:0] dt1_II, // same as JT51's DT1
// phase modulation from LFO
//input [ 7:0] pm,
//input [ 2:0] pms,
// phase operation
input pg_rst_III,
input zero,
input pg_stop,
output reg [ 4:0] keycode_III,
output reg [ 9:0] phase_VIII
);
/*
reg signed [8:0] mod;
always @(*) begin
case( pms ) // comprobar en silicio
3'd0: mod <= 9'd0;
3'd1: mod <= { 7'd0, pm[6:5] };
3'd2: mod <= { 6'd0, pm[6:4] };
3'd3: mod <= { 5'd0, pm[6:3] };
3'd4: mod <= { 4'd0, pm[6:2] };
3'd5: mod <= { 3'd0, pm[6:1] };
3'd6: mod <= { 1'd0, pm[6:0], 1'b0 };
3'd7: mod <= { pm[6:0], 2'b0 };
endcase
end
jt12_pm u_pm(
// Channel frequency
.kc(kc),
.kf(kf),
.add(~pm[7]),
.mod(mod),
.kcex(keycode_I)
);
*/
wire pg_rst_VI;
//////////////////////////////////////////////////
// I
reg [4:0] keycode_II;
reg [16:0] phinc_II;
always @(posedge clk) begin : phase_calculation_I
case ( block_I )
3'd0: phinc_II <= { 7'd0, fnum_I[10:1] };
3'd1: phinc_II <= { 6'd0, fnum_I };
3'd2: phinc_II <= { 5'd0, fnum_I, 1'd0 };
3'd3: phinc_II <= { 4'd0, fnum_I, 2'd0 };
3'd4: phinc_II <= { 3'd0, fnum_I, 3'd0 };
3'd5: phinc_II <= { 2'd0, fnum_I, 4'd0 };
3'd6: phinc_II <= { 1'd0, fnum_I, 5'd0 };
3'd7: phinc_II <= { fnum_I, 6'd0 };
endcase
keycode_II <= { block_I, fnum_I[10], fnum_I[10] ? (|fnum_I[9:7]) : (&fnum_I[9:7])};
end
//////////////////////////////////////////////////
// II
reg [ 5:0] dt1_kf_III;
reg [16:0] phinc_III;
reg [ 2:0] dt1_III;
always @(posedge clk) begin : phase_calculation_II
case( dt1_II[1:0] )
2'd1: dt1_kf_III <= { 1'b0, keycode_II } - 6'd4;
2'd2: dt1_kf_III <= { 1'b0, keycode_II } + 6'd4;
2'd3: dt1_kf_III <= { 1'b0, keycode_II } + 6'd8;
default:dt1_kf_III <= { 1'b0, keycode_II };
endcase
dt1_III <= dt1_II;
phinc_III <= phinc_II;
keycode_III <= keycode_II;
end
//////////////////////////////////////////////////
// III
reg [16:0] phinc_IV;
reg [ 4:0] pow2;
reg [ 2:0] dt1_IV;
always @(*) begin : calcpow2
case( dt1_kf_III[2:0] )
3'd0: pow2 <= 5'd16;
3'd1: pow2 <= 5'd17;
3'd2: pow2 <= 5'd19;
3'd3: pow2 <= 5'd20;
3'd4: pow2 <= 5'd22;
3'd5: pow2 <= 5'd24;
3'd6: pow2 <= 5'd26;
3'd7: pow2 <= 5'd29;
endcase
end
reg [5:0] dt1_unlimited;
reg [4:0] dt1_limit, dt1_offset_IV;
always @(*) begin : dt1_limit_mux
case( dt1_III[1:0] )
default: dt1_limit <= 5'd8;
2'd1: dt1_limit <= 5'd8;
2'd2: dt1_limit <= 5'd16;
2'd3: dt1_limit <= 5'd22;
endcase
case( dt1_kf_III[5:3] )
3'd0: dt1_unlimited <= { 5'd0, pow2[4] }; // <2
3'd1: dt1_unlimited <= { 4'd0, pow2[4:3] }; // <4
3'd2: dt1_unlimited <= { 3'd0, pow2[4:2] }; // <8
3'd3: dt1_unlimited <= { 2'd0, pow2[4:1] };
3'd4: dt1_unlimited <= { 1'd0, pow2[4:0] };
3'd5: dt1_unlimited <= { pow2[4:0], 1'd0 };
default:dt1_unlimited <= 6'd0;
endcase
end
always @(posedge clk) begin : phase_calculation_III
dt1_offset_IV <= dt1_unlimited > dt1_limit ?
dt1_limit : dt1_unlimited[4:0];
dt1_IV <= dt1_III;
phinc_IV <= phinc_III;
end
//////////////////////////////////////////////////
// IV
reg [16:0] phinc_V;
always @(posedge clk) begin : phase_calculation_IV
if( dt1_IV[1:0]==2'd0 )
phinc_V <= phinc_IV;
else begin
if( !dt1_IV[2] )
phinc_V <= phinc_IV + dt1_offset_IV;
else
phinc_V <= phinc_IV - dt1_offset_IV;
end
end
//////////////////////////////////////////////////
// V APPLY_MUL
reg [16:0] phinc_VI;
always @(posedge clk) begin : phase_calculation_V
if( mul_V==4'd0 )
phinc_VI <= { 1'b0, phinc_V[16:1] };
else
phinc_VI <= phinc_V * mul_V;
end
//////////////////////////////////////////////////
// VI add phinc to the phase
wire keyon_VI;
wire [19:0] phase_drop;
reg [19:0] phase_in;
reg [ 9:0] phase_VII;
always @(*)
phase_in <= pg_rst_VI ? 20'd0 :
( pg_stop ? phase_drop : phase_drop + phinc_VI);
always @(posedge clk) begin : phase_calculation_VI
phase_VII <= phase_in[19:10];
end
//////////////////////////////////////////////////
// VIII padding
always @(posedge clk)
phase_VIII <= phase_VII;
jt12_sh #( .width(20), .stages(24) ) u_phsh(
.clk ( clk ),
// .rst ( rst ),
.din ( phase_in ),
.drop ( phase_drop)
);
jt12_sh #( .width(1), .stages(3) ) u_rstsh(
.clk ( clk ),
.din ( pg_rst_III),
.drop ( pg_rst_VI )
);
`ifdef SIMULATION
reg [4:0] sep24_cnt;
wire [9:0] pg_ch0s1, pg_ch1s1, pg_ch2s1, pg_ch3s1,
pg_ch4s1, pg_ch5s1, pg_ch0s2, pg_ch1s2,
pg_ch2s2, pg_ch3s2, pg_ch4s2, pg_ch5s2,
pg_ch0s3, pg_ch1s3, pg_ch2s3, pg_ch3s3,
pg_ch4s3, pg_ch5s3, pg_ch0s4, pg_ch1s4,
pg_ch2s4, pg_ch3s4, pg_ch4s4, pg_ch5s4;
always @(posedge clk)
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
sep24 #( .width(10), .pos0(18)) stsep
(
.clk ( clk ),
.mixed ( phase_VIII),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (pg_ch0s1),
.ch1s1 (pg_ch1s1),
.ch2s1 (pg_ch2s1),
.ch3s1 (pg_ch3s1),
.ch4s1 (pg_ch4s1),
.ch5s1 (pg_ch5s1),
.ch0s2 (pg_ch0s2),
.ch1s2 (pg_ch1s2),
.ch2s2 (pg_ch2s2),
.ch3s2 (pg_ch3s2),
.ch4s2 (pg_ch4s2),
.ch5s2 (pg_ch5s2),
.ch0s3 (pg_ch0s3),
.ch1s3 (pg_ch1s3),
.ch2s3 (pg_ch2s3),
.ch3s3 (pg_ch3s3),
.ch4s3 (pg_ch4s3),
.ch5s3 (pg_ch5s3),
.ch0s4 (pg_ch0s4),
.ch1s4 (pg_ch1s4),
.ch2s4 (pg_ch2s4),
.ch3s4 (pg_ch3s4),
.ch4s4 (pg_ch4s4),
.ch5s4 (pg_ch5s4)
);
wire [16:0] phinc_ch0s1, phinc_ch1s1, phinc_ch2s1, phinc_ch3s1,
phinc_ch4s1, phinc_ch5s1, phinc_ch0s2, phinc_ch1s2,
phinc_ch2s2, phinc_ch3s2, phinc_ch4s2, phinc_ch5s2,
phinc_ch0s3, phinc_ch1s3, phinc_ch2s3, phinc_ch3s3,
phinc_ch4s3, phinc_ch5s3, phinc_ch0s4, phinc_ch1s4,
phinc_ch2s4, phinc_ch3s4, phinc_ch4s4, phinc_ch5s4;
sep24 #( .width(17), .pos0(3+6)) pisep
(
.clk ( clk ),
.mixed ( phinc_VI),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (phinc_ch0s1),
.ch1s1 (phinc_ch1s1),
.ch2s1 (phinc_ch2s1),
.ch3s1 (phinc_ch3s1),
.ch4s1 (phinc_ch4s1),
.ch5s1 (phinc_ch5s1),
.ch0s2 (phinc_ch0s2),
.ch1s2 (phinc_ch1s2),
.ch2s2 (phinc_ch2s2),
.ch3s2 (phinc_ch3s2),
.ch4s2 (phinc_ch4s2),
.ch5s2 (phinc_ch5s2),
.ch0s3 (phinc_ch0s3),
.ch1s3 (phinc_ch1s3),
.ch2s3 (phinc_ch2s3),
.ch3s3 (phinc_ch3s3),
.ch4s3 (phinc_ch4s3),
.ch5s3 (phinc_ch5s3),
.ch0s4 (phinc_ch0s4),
.ch1s4 (phinc_ch1s4),
.ch2s4 (phinc_ch2s4),
.ch3s4 (phinc_ch3s4),
.ch4s4 (phinc_ch4s4),
.ch5s4 (phinc_ch5s4)
);
wire [10:0] fnum_ch0s1, fnum_ch1s1, fnum_ch2s1, fnum_ch3s1,
fnum_ch4s1, fnum_ch5s1, fnum_ch0s2, fnum_ch1s2,
fnum_ch2s2, fnum_ch3s2, fnum_ch4s2, fnum_ch5s2,
fnum_ch0s3, fnum_ch1s3, fnum_ch2s3, fnum_ch3s3,
fnum_ch4s3, fnum_ch5s3, fnum_ch0s4, fnum_ch1s4,
fnum_ch2s4, fnum_ch3s4, fnum_ch4s4, fnum_ch5s4;
sep24 #( .width(11), .pos0(3+1)) fnsep
(
.clk ( clk ),
.mixed ( fnum_I),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (fnum_ch0s1),
.ch1s1 (fnum_ch1s1),
.ch2s1 (fnum_ch2s1),
.ch3s1 (fnum_ch3s1),
.ch4s1 (fnum_ch4s1),
.ch5s1 (fnum_ch5s1),
.ch0s2 (fnum_ch0s2),
.ch1s2 (fnum_ch1s2),
.ch2s2 (fnum_ch2s2),
.ch3s2 (fnum_ch3s2),
.ch4s2 (fnum_ch4s2),
.ch5s2 (fnum_ch5s2),
.ch0s3 (fnum_ch0s3),
.ch1s3 (fnum_ch1s3),
.ch2s3 (fnum_ch2s3),
.ch3s3 (fnum_ch3s3),
.ch4s3 (fnum_ch4s3),
.ch5s3 (fnum_ch5s3),
.ch0s4 (fnum_ch0s4),
.ch1s4 (fnum_ch1s4),
.ch2s4 (fnum_ch2s4),
.ch3s4 (fnum_ch3s4),
.ch4s4 (fnum_ch4s4),
.ch5s4 (fnum_ch5s4)
);
wire pgrst_III_ch0s1, pgrst_III_ch1s1, pgrst_III_ch2s1, pgrst_III_ch3s1,
pgrst_III_ch4s1, pgrst_III_ch5s1, pgrst_III_ch0s2, pgrst_III_ch1s2,
pgrst_III_ch2s2, pgrst_III_ch3s2, pgrst_III_ch4s2, pgrst_III_ch5s2,
pgrst_III_ch0s3, pgrst_III_ch1s3, pgrst_III_ch2s3, pgrst_III_ch3s3,
pgrst_III_ch4s3, pgrst_III_ch5s3, pgrst_III_ch0s4, pgrst_III_ch1s4,
pgrst_III_ch2s4, pgrst_III_ch3s4, pgrst_III_ch4s4, pgrst_III_ch5s4;
sep24 #( .width(1), .pos0(23)) pgrstsep
(
.clk ( clk ),
.mixed ( pg_rst_III),
.mask ( 0 ),
.cnt ( sep24_cnt ),
.ch0s1 (pgrst_III_ch0s1),
.ch1s1 (pgrst_III_ch1s1),
.ch2s1 (pgrst_III_ch2s1),
.ch3s1 (pgrst_III_ch3s1),
.ch4s1 (pgrst_III_ch4s1),
.ch5s1 (pgrst_III_ch5s1),
.ch0s2 (pgrst_III_ch0s2),
.ch1s2 (pgrst_III_ch1s2),
.ch2s2 (pgrst_III_ch2s2),
.ch3s2 (pgrst_III_ch3s2),
.ch4s2 (pgrst_III_ch4s2),
.ch5s2 (pgrst_III_ch5s2),
.ch0s3 (pgrst_III_ch0s3),
.ch1s3 (pgrst_III_ch1s3),
.ch2s3 (pgrst_III_ch2s3),
.ch3s3 (pgrst_III_ch3s3),
.ch4s3 (pgrst_III_ch4s3),
.ch5s3 (pgrst_III_ch5s3),
.ch0s4 (pgrst_III_ch0s4),
.ch1s4 (pgrst_III_ch1s4),
.ch2s4 (pgrst_III_ch2s4),
.ch3s4 (pgrst_III_ch3s4),
.ch4s4 (pgrst_III_ch4s4),
.ch5s4 (pgrst_III_ch5s4)
);
`endif
endmodule

View File

@ -0,0 +1,77 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
// altera message_off 10030
module jt12_phrom
(
input [4:0] addr,
input clk,
output reg [45:0] ph
);
reg [45:0] sinetable[31:0];
initial
begin
sinetable[5'd0 ] <= 46'b0001100000100100010001000010101010101001010010;
sinetable[5'd1 ] <= 46'b0001100000110100000100000010010001001101000001;
sinetable[5'd2 ] <= 46'b0001100000110100000100110010001011001101100000;
sinetable[5'd3 ] <= 46'b0001110000010000000000110010110001001101110010;
sinetable[5'd4 ] <= 46'b0001110000010000001100000010111010001101101001;
sinetable[5'd5 ] <= 46'b0001110000010100001001100010000000101101111010;
sinetable[5'd6 ] <= 46'b0001110000010100001101100010010011001101011010;
sinetable[5'd7 ] <= 46'b0001110000011100000101010010111000101111111100;
sinetable[5'd8 ] <= 46'b0001110000111000000001110010101110001101110111;
sinetable[5'd9 ] <= 46'b0001110000111000010100111000011101011010100110;
sinetable[5'd10] <= 46'b0001110000111100011000011000111100001001111010;
sinetable[5'd11] <= 46'b0001110000111100011100111001101011001001110111;
sinetable[5'd12] <= 46'b0100100001010000010001011001001000111010110111;
sinetable[5'd13] <= 46'b0100100001010100010001001001110001111100101010;
sinetable[5'd14] <= 46'b0100100001010100010101101101111110100101000110;
sinetable[5'd15] <= 46'b0100100011100000001000011001010110101101111001;
sinetable[5'd16] <= 46'b0100100011100100001000101011100101001011101111;
sinetable[5'd17] <= 46'b0100100011101100000111011010000001011010110001;
sinetable[5'd18] <= 46'b0100110011001000000111101010000010111010111111;
sinetable[5'd19] <= 46'b0100110011001100001011011110101110110110000001;
sinetable[5'd20] <= 46'b0100110011101000011010111011001010001101110001;
sinetable[5'd21] <= 46'b0100110011101101011010110101111001010100001111;
sinetable[5'd22] <= 46'b0111000010000001010111000101010101010110010111;
sinetable[5'd23] <= 46'b0111000010000101010111110111110101010010111011;
sinetable[5'd24] <= 46'b0111000010110101101000101100001000010000011001;
sinetable[5'd25] <= 46'b0111010010011001100100011110100100010010010010;
sinetable[5'd26] <= 46'b0111010010111010100101100101000000110100100011;
sinetable[5'd27] <= 46'b1010000010011010101101011101100001110010011010;
sinetable[5'd28] <= 46'b1010000010111111111100100111010100010000111001;
sinetable[5'd29] <= 46'b1010010111110100110010001100111001010110100000;
sinetable[5'd30] <= 46'b1011010111010011111011011110000100110010100001;
sinetable[5'd31] <= 46'b1110011011110001111011100111100001110110100111;
end
always @ (posedge clk)
ph <= sinetable[addr];
endmodule

363
src/sound/jt12/jt12_reg.v Normal file
View File

@ -0,0 +1,363 @@
`timescale 1ns / 1ps
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2017
*/
module jt12_reg(
input rst,
input clk,
input [7:0] din,
input [2:0] ch,
input [1:0] op,
input csm,
input flag_A,
input overflow_A,
input up_keyon,
input up_alg,
input up_block,
input up_fnumlo,
input up_pms,
input up_dt1,
input up_tl,
input up_ks_ar,
input up_amen_d1r,
input up_d2r,
input up_d1l,
input up_ssgeg,
output busy,
output reg ch6op, // 1 when the operator belongs to CH6
// CH3 Effect-mode operation
input effect,
input [10:0] fnum_ch3op2,
input [10:0] fnum_ch3op3,
input [10:0] fnum_ch3op1,
input [ 2:0] block_ch3op2,
input [ 2:0] block_ch3op3,
input [ 2:0] block_ch3op1,
// Pipeline order
output reg zero,
output s1_enters,
output s2_enters,
output s3_enters,
output s4_enters,
// Operator
output use_prevprev1,
output use_internal_x,
output use_internal_y,
output use_prev2,
output use_prev1,
// PG
output [10:0] fnum_I,
output [ 2:0] block_I,
// channel configuration
output [1:0] rl,
output reg [2:0] fb_II,
output [2:0] alg,
// Operator multiplying
output [ 3:0] mul_V,
// Operator detuning
output [ 2:0] dt1_II,
// EG
output [4:0] ar_II, // attack rate
output [4:0] d1r_II, // decay rate
output [4:0] d2r_II, // sustain rate
output [3:0] rr_II, // release rate
output [3:0] d1l, // sustain level
output [1:0] ks_III, // key scale
output ssg_en_II,
output [2:0] ssg_eg_II,
output [6:0] tl_VII,
output [2:0] pms,
output [1:0] ams_VII,
output amsen_VII,
// envelope operation
output keyon_II
);
reg [4:0] cnt;
reg [1:0] next_op, cur_op;
reg [2:0] next_ch, cur_ch;
assign s1_enters = cur_op == 2'b00;
assign s3_enters = cur_op == 2'b01;
assign s2_enters = cur_op == 2'b10;
assign s4_enters = cur_op == 2'b11;
wire [4:0] next = { next_op, next_ch };
wire [4:0] cur = { cur_op, cur_ch };
wire [2:0] fb_I;
always @(posedge clk) begin
fb_II <= fb_I;
ch6op <= next_ch==3'd6;
end
// FNUM and BLOCK
wire [10:0] fnum_I_raw;
wire [ 2:0] block_I_raw;
wire effect_on = effect && (cur_ch==3'd2);
wire effect_on_s1 = effect_on && (cur_op == 2'd0 );
wire effect_on_s3 = effect_on && (cur_op == 2'd1 );
wire effect_on_s2 = effect_on && (cur_op == 2'd2 );
wire noeffect = ~|{effect_on_s1, effect_on_s3, effect_on_s2};
assign fnum_I = ( {11{effect_on_s1}} & fnum_ch3op1 ) |
( {11{effect_on_s2}} & fnum_ch3op2 ) |
( {11{effect_on_s3}} & fnum_ch3op3 ) |
( {11{noeffect}} & fnum_I_raw );
assign block_I =( {3{effect_on_s1}} & block_ch3op1 ) |
( {3{effect_on_s2}} & block_ch3op2 ) |
( {3{effect_on_s3}} & block_ch3op3 ) |
( {3{noeffect}} & block_I_raw );
wire [2:0] ch_II, ch_III, ch_IV, ch_V, ch_VI;
wire [4:0] req_opch_I = { op, ch };
wire [4:0] req_opch_II, req_opch_III,
req_opch_IV, req_opch_V, req_opch_VI;
jt12_sumch u_opch_II ( .chin(req_opch_I ), .chout(req_opch_II) );
jt12_sumch u_opch_III( .chin(req_opch_II ), .chout(req_opch_III) );
jt12_sumch u_opch_IV ( .chin(req_opch_III), .chout(req_opch_IV) );
jt12_sumch u_opch_V ( .chin(req_opch_IV ), .chout(req_opch_V) );
jt12_sumch u_opch_VI ( .chin(req_opch_V ), .chout(req_opch_VI) );
wire update_op_I = cur == req_opch_I;
wire update_op_II = cur == req_opch_II;
wire update_op_III= cur == req_opch_III;
// wire update_op_IV = cur == opch_IV;
wire update_op_V = cur == req_opch_V;
// wire update_op_VI = cur == opch_VI;
wire [2:0] op_plus1 = op+2'd1;
wire update_op_VII= cur == { op_plus1[1:0], ch };
// key on/off
wire [3:0] keyon_op = din[7:4];
wire [2:0] keyon_ch = din[2:0];
// channel data
wire [1:0] rl_in = din[7:6];
wire [2:0] fb_in = din[5:3];
wire [2:0] alg_in = din[2:0];
wire [2:0] pms_in = din[2:0];
wire [1:0] ams_in = din[5:4];
wire [2:0] block_in= din[5:3];
wire [2:0] fnhi_in = din[2:0];
wire [7:0] fnlo_in = din;
// operator data
wire [2:0] dt1_in = din[6:4];
wire [3:0] mul_in = din[3:0];
wire [6:0] tl_in = din[6:0];
wire [1:0] ks_in = din[7:6];
wire [4:0] ar_in = din[4:0];
wire amen_in = din[7];
wire [4:0] d1r_in = din[4:0];
wire [4:0] d2r_in = din[4:0];
wire [3:0] d1l_in = din[7:4];
wire [3:0] rr_in = din[3:0];
wire [3:0] ssg_in = din[3:0];
wire [3:0] ssg;
reg last;
wire update_ch_I = cur_ch == ch;
wire up_alg_ch = up_alg & update_ch_I;
wire up_block_ch= up_block & update_ch_I;
wire up_fnumlo_ch=up_fnumlo & update_ch_I;
wire up_pms_ch = up_pms & update_ch_I;
// DT1 & MUL
wire up_dt1_op = up_dt1 & update_op_II;
wire up_mul_op = up_dt1 & update_op_V;
// TL
wire up_tl_op = up_tl & update_op_VII;
// KS & AR
wire up_ks_op = up_ks_ar & update_op_III;
wire up_ar_op = up_ks_ar & update_op_II;
// AM ON, D1R
wire up_amen_op = up_amen_d1r & update_op_VII;
wire up_d1r_op = up_amen_d1r & update_op_II;
// Sustain Rate (D2R)
wire up_d2r_op = up_d2r & update_op_II;
// D1L & RR
wire up_d1l_op = up_d1l & update_op_I;
wire up_rr_op = up_d1l & update_op_II;
// SSG
//wire up_ssgen_op = up_ssgeg & update_op_I;
wire up_ssg_op = up_ssgeg & update_op_II;
wire up = up_alg | up_block | up_fnumlo | up_pms |
up_dt1 | up_tl | up_ks_ar | up_amen_d1r |
up_d2r | up_d1l | up_ssgeg | up_keyon;
always @(*) begin
// next <= cur==5'd23 ? 5'd0 : cur +1'b1;
next_op <= cur_ch==3'd6 ? cur_op+1'b1 : cur_op;
next_ch <= cur_ch[1:0]==2'b10 ? cur_ch+2'd2 : cur_ch+1'd1;
end
reg busy_op;
reg up_keyon_long;
assign busy = busy_op;
always @(posedge clk) begin : up_counter
if( rst ) begin
cnt <= 5'h0;
last <= 1'b0;
zero <= 1'b1;
busy_op <= 1'b0;
up_keyon_long <= 1'b0;
cur_op <= 2'd0;
cur_ch <= 3'd0;
end
else begin
{ cur_op, cur_ch } <= { next_op, next_ch };
zero <= next == 5'd0;
last <= up;
if( up && !last ) begin
cnt <= cur;
busy_op <= 1'b1;
up_keyon_long <= up_keyon;
end
else if( cnt == cur ) begin
busy_op <= 1'b0;
up_keyon_long <= 1'b0;
end
end
end
jt12_kon u_kon(
.rst ( rst ),
.clk ( clk ),
.keyon_op ( keyon_op ),
.keyon_ch ( keyon_ch ),
.cur_op ( cur_op ),
.cur_ch ( cur_ch ),
.up_keyon ( up_keyon_long ),
.csm ( csm ),
.flag_A ( flag_A ),
.overflow_A ( overflow_A),
.keyon_II ( keyon_II )
);
jt12_mod u_mod(
.alg_I ( alg ),
.s1_enters ( s1_enters ),
.s3_enters ( s3_enters ),
.s2_enters ( s2_enters ),
.s4_enters ( s4_enters ),
.use_prevprev1 ( use_prevprev1 ),
.use_internal_x( use_internal_x ),
.use_internal_y( use_internal_y ),
.use_prev2 ( use_prev2 ),
.use_prev1 ( use_prev1 )
);
// memory for OP registers
parameter regop_width=44;
wire [regop_width-1:0] regop_in, regop_out;
jt12_opram u_opram(
.clk ( clk ),
.wr_addr ( cur ),
.rd_addr ( next ),
.data ( regop_in ),
.q ( regop_out )
);
assign regop_in = {
up_tl_op ? tl_in : tl_VII, // 7
up_dt1_op ? dt1_in : dt1_II, // 3
up_mul_op ? mul_in : mul_V, // 4 - 7
up_ks_op ? ks_in : ks_III, // 2 - 16
up_ar_op ? ar_in : ar_II, // 5 - 21
up_amen_op ? amen_in: amsen_VII,// 1 - 22
up_d1r_op ? d1r_in : d1r_II, // 5 - 25
up_d2r_op ? d2r_in : d2r_II, // 5 - 30
up_d1l_op ? d1l_in : d1l, // 4 - 34
up_rr_op ? rr_in : rr_II, // 4 - 38
up_ssg_op ? ssg_in[3] : ssg_en_II, // 1 - 39
up_ssg_op ? ssg_in[2:0] : ssg_eg_II // 3 - 42
};
assign { tl_VII, dt1_II, mul_V, ks_III,
ar_II, amsen_VII, d1r_II, d2r_II, d1l, rr_II,
ssg_en_II, ssg_eg_II } = regop_out;
wire [2:0] block_latch, fnum_latch;
// memory for CH registers
// Block/fnum data is latched until fnum low byte is written to
// Trying to synthesize this memory as M-9K RAM in Altera devices
// turns out worse in terms of resource utilization. Probably because
// this memory is already very small. It is better to leave it as it is.
parameter regch_width=31;
wire [regch_width-1:0] regch_out;
wire [regch_width-1:0] regch_in = {
up_block_ch ? { block_in, fnhi_in } : { block_latch, fnum_latch }, // 3+3
up_fnumlo_ch? { block_latch, fnum_latch, fnlo_in } : { block_I_raw, fnum_I_raw }, // 14
up_alg_ch ? { fb_in, alg_in } : { fb_I, alg },//3+3
up_pms_ch ? { ams_in, pms_in } : { ams_VII, pms }//2+2+3
};
assign { block_latch, fnum_latch,
block_I_raw, fnum_I_raw,
fb_I, alg, ams_VII, pms } = regch_out;
jt12_sh #(.width(regch_width),.stages(6)) u_regch(
.clk ( clk ),
//.rst ( rst ),
.din ( regch_in ),
.drop ( regch_out )
);
// RL is on a different register to
// have the reset to 1
jt12_sh_rst #(.width(2),.stages(6),.rstval(1'b1)) u_regch_rl(
.clk ( clk ),
// .rst ( rst ),
.din ( up_pms_ch ? rl_in : rl ),
.drop ( rl )
);
endmodule

45
src/sound/jt12/jt12_sh.v Normal file
View File

@ -0,0 +1,45 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 1-31-2017
*/
`timescale 1ns / 1ps
module jt12_sh #(parameter width=5, stages=24 )
(
input clk,
input [width-1:0] din,
output [width-1:0] drop
);
reg [stages-1:0] bits[width-1:0];
genvar i;
generate
for (i=0; i < width; i=i+1) begin: bit_shifter
always @(posedge clk) begin
if( stages> 1 )
bits[i] <= {bits[i][stages-2:0], din[i]};
else
bits[i] <= din[i];
end
assign drop[i] = bits[i][stages-1];
end
endgenerate
endmodule

View File

@ -0,0 +1,80 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 1-31-2017
*/
`timescale 1ns / 1ps
module jt12_sh24 #(parameter width=5 )
(
input clk,
input [width-1:0] din,
output reg [width-1:0] st1,
output reg [width-1:0] st2,
output reg [width-1:0] st3,
output reg [width-1:0] st4,
output reg [width-1:0] st5,
output reg [width-1:0] st6,
output reg [width-1:0] st7,
output reg [width-1:0] st8,
output reg [width-1:0] st9,
output reg [width-1:0] st10,
output reg [width-1:0] st11,
output reg [width-1:0] st12,
output reg [width-1:0] st13,
output reg [width-1:0] st14,
output reg [width-1:0] st15,
output reg [width-1:0] st16,
output reg [width-1:0] st17,
output reg [width-1:0] st18,
output reg [width-1:0] st19,
output reg [width-1:0] st20,
output reg [width-1:0] st21,
output reg [width-1:0] st22,
output reg [width-1:0] st23,
output reg [width-1:0] st24
);
always @(posedge clk) begin
st24<= st23;
st23<= st22;
st22<= st21;
st21<= st20;
st20<= st19;
st19<= st18;
st18<= st17;
st17<= st16;
st16<= st15;
st15<= st14;
st14<= st13;
st13<= st12;
st12<= st11;
st11<= st10;
st10<= st9;
st9 <= st8;
st8 <= st7;
st7 <= st6;
st6 <= st5;
st5 <= st4;
st4 <= st3;
st3 <= st2;
st2 <= st1;
st1 <= din;
end
endmodule

View File

@ -0,0 +1,54 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 1-31-2017
*/
`timescale 1ns / 1ps
module jt12_sh_rst #(parameter width=5, stages=32, rstval=1'b0 )
(
// input rst,
input clk,
input [width-1:0] din,
output [width-1:0] drop
);
reg [stages-1:0] bits[width-1:0];
genvar i;
integer k;
generate
initial
for (k=0; k < width; k=k+1) begin
bits[k] <= { stages{rstval}};
end
endgenerate
generate
for (i=0; i < width; i=i+1) begin: bit_shifter
always @(posedge clk) begin
if( stages> 1 )
bits[i] <= {bits[i][stages-2:0], din[i]};
else
bits[i] <= din[i];
end
assign drop[i] = bits[i][stages-1];
end
endgenerate
endmodule

View File

@ -0,0 +1,37 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 1-31-2017
*/
`timescale 1ns / 1ps
module jt12_sumch
(
input [4:0] chin,
output reg [4:0] chout
);
reg [2:0] aux;
always @(*) begin
aux <= chin[2:0] + 3'd1;
chout[2:0] <= aux[1:0]==2'b11 ? aux+3'd1 : aux;
chout[4:3] <= chin[2:0]==3'd6 ? chin[4:3]+2'd1 : chin[4:3];
end
endmodule

338
src/sound/jt12/jt12_syn.v Normal file
View File

@ -0,0 +1,338 @@
module jt12_syn(
input rst,
input clk, // cpu_clk/6 ~ 1.3MHz
input [7:0] din,
input [1:0] addr,
input write,
input limiter_en,
output busy,
output flag_A,
output flag_B,
output irq_n,
// combined output
output signed [11:0] snd_right,
output signed [11:0] snd_left,
output snd_sample,
// multiplexed output
output signed [8:0] mux_right,
output signed [8:0] mux_left,
output mux_sample
);
// Timers
wire [9:0] value_A;
wire [7:0] value_B;
wire load_A, load_B;
wire enable_irq_A, enable_irq_B;
wire clr_flag_A, clr_flag_B;
wire overflow_A;
wire fast_timers;
wire zero; // Single-clock pulse at the begginig of s1_enters
// LFO
wire [2:0] lfo_freq;
wire lfo_en;
// Operators
wire amsen_VII;
wire [ 2:0] dt1_II;
wire [ 3:0] mul_V;
wire [ 6:0] tl_VII;
wire [4:0] keycode_III;
wire [ 4:0] ar_II;
wire [ 4:0] d1r_II;
wire [ 4:0] d2r_II;
wire [ 3:0] rr_II;
wire [ 3:0] d1l;
wire [ 1:0] ks_III;
// SSG operation
wire ssg_en_II;
wire [2:0] ssg_eg_II;
// envelope operation
wire keyon_II;
wire [9:0] eg_IX;
wire pg_rst_III;
// Channel
wire [10:0] fnum_I;
wire [ 2:0] block_I;
wire [ 1:0] rl;
wire [ 2:0] fb_II;
wire [ 2:0] alg;
wire [ 2:0] pms;
wire [ 1:0] ams_VII;
// PCM
wire pcm_en;
wire [ 8:0] pcm;
// Test
wire pg_stop, eg_stop;
wire ch6op;
// Operator
wire use_internal_x, use_internal_y;
wire use_prevprev1, use_prev2, use_prev1;
wire [ 9:0] phase_VIII;
wire s1_enters, s2_enters, s3_enters, s4_enters;
wire rst_int;
// LFO
wire [6:0] lfo_mod;
wire lfo_rst;
`ifdef TEST_SUPPORT
// Test bits
wire test_eg, test_op0;
`endif
jt12_mmr u_mmr(
.rst ( rst ),
.clk ( clk ),
.din ( din ),
.write ( write ),
.addr ( addr ),
.busy ( busy ),
.ch6op ( ch6op ),
// LFO
.lfo_freq ( lfo_freq ),
.lfo_en ( lfo_en ),
// Timers
.value_A ( value_A ),
.value_B ( value_B ),
.load_A ( load_A ),
.load_B ( load_B ),
.enable_irq_A ( enable_irq_A ),
.enable_irq_B ( enable_irq_B ),
.clr_flag_A ( clr_flag_A ),
.clr_flag_B ( clr_flag_B ),
.flag_A ( flag_A ),
.overflow_A ( overflow_A ),
.fast_timers( fast_timers ),
// PCM
.pcm ( pcm ),
.pcm_en ( pcm_en ),
`ifdef TEST_SUPPORT
// Test
.test_eg ( test_eg ),
.test_op0 ( test_op0 ),
`endif
// Operator
.use_prevprev1 ( use_prevprev1 ),
.use_internal_x ( use_internal_x ),
.use_internal_y ( use_internal_y ),
.use_prev2 ( use_prev2 ),
.use_prev1 ( use_prev1 ),
// PG
.fnum_I ( fnum_I ),
.block_I ( block_I ),
.pg_stop ( pg_stop ),
// EG
.rl ( rl ),
.fb_II ( fb_II ),
.alg ( alg ),
.pms ( pms ),
.ams_VII ( ams_VII ),
.amsen_VII ( amsen_VII ),
.dt1_II ( dt1_II ),
.mul_V ( mul_V ),
.tl_VII ( tl_VII ),
.ar_II ( ar_II ),
.d1r_II ( d1r_II ),
.d2r_II ( d2r_II ),
.rr_II ( rr_II ),
.d1l ( d1l ),
.ks_III ( ks_III ),
.eg_stop ( eg_stop ),
// SSG operation
.ssg_en_II ( ssg_en_II ),
.ssg_eg_II ( ssg_eg_II ),
.keyon_II ( keyon_II ),
// Operator
.zero ( zero ),
.s1_enters ( s1_enters ),
.s2_enters ( s2_enters ),
.s3_enters ( s3_enters ),
.s4_enters ( s4_enters )
);
jt12_timers u_timers(
.clk ( clk ),
.rst ( rst ),
.clk_en ( zero ),
.fast_timers( fast_timers ), // fix this to work well with clock enable signals
.value_A ( value_A ),
.value_B ( value_B ),
.load_A ( load_A ),
.load_B ( load_B ),
.enable_irq_A( enable_irq_B ),
.enable_irq_B( enable_irq_A ),
.clr_flag_A ( clr_flag_A ),
.clr_flag_B ( clr_flag_B ),
.flag_A ( flag_A ),
.flag_B ( flag_B ),
.overflow_A ( overflow_A ),
.irq_n ( irq_n )
);
jt12_lfo u_lfo(
.rst ( rst ),
.clk ( clk ),
.zero ( zero ),
.lfo_rst ( 1'b0 ),
.lfo_en ( lfo_en ),
.lfo_freq ( lfo_freq ),
.lfo_mod ( lfo_mod )
);
`ifndef TIMERONLY
jt12_pg u_pg(
.clk ( clk ),
.rst ( rst ),
// Channel frequency
.fnum_I ( fnum_I ),
.block_I ( block_I ),
// Operator multiplying
.mul_V ( mul_V ),
// Operator detuning
.dt1_II ( dt1_II ), // same as JT51's DT1
// phase operation
.pg_rst_III ( pg_rst_III ),
.zero ( zero ),
.pg_stop ( pg_stop ),
.keycode_III( keycode_III ),
.phase_VIII ( phase_VIII )
);
jt12_eg u_eg(
`ifdef TEST_SUPPORT
.test_eg ( test_eg ),
`endif
.rst ( rst ),
.clk ( clk ),
.zero ( zero ),
.eg_stop ( eg_stop ),
// envelope configuration
.keycode_III ( keycode_III ),
.arate_II ( ar_II ), // attack rate
.rate1_II ( d1r_II ), // decay rate
.rate2_II ( d2r_II ), // sustain rate
.rrate_II ( rr_II ), // release rate
.d1l ( d1l ), // sustain level
.ks_III ( ks_III ), // key scale
// SSG operation
.ssg_en_II ( ssg_en_II ),
.ssg_eg_II ( ssg_eg_II ),
// envelope operation
.keyon_II ( keyon_II ),
// envelope number
.am ( lfo_mod ),
.tl_VII ( tl_VII ),
.ams_VII ( ams_VII ),
.amsen_VII ( amsen_VII ),
.eg_IX ( eg_IX ),
.pg_rst_III ( pg_rst_III )
);
wire [8:0] op_result;
jt12_op u_op(
.rst ( rst ),
.clk ( clk ),
.pg_phase_VIII ( phase_VIII ),
.eg_atten_IX ( eg_IX ),
.fb_II ( fb_II ),
.test_214 ( 1'b0 ),
.s1_enters ( s1_enters ),
.s2_enters ( s2_enters ),
.s3_enters ( s3_enters ),
.s4_enters ( s4_enters ),
.use_prevprev1 ( use_prevprev1 ),
.use_internal_x ( use_internal_x),
.use_internal_y ( use_internal_y),
.use_prev2 ( use_prev2 ),
.use_prev1 ( use_prev1 ),
.zero ( zero ),
.op_result ( op_result )
);
jt12_acc u_acc(
.rst ( rst ),
.clk ( clk ),
.op_result ( op_result ),
.rl ( rl ),
.limiter_en ( limiter_en),
// note that the order changes to deal
// with the operator pipeline delay
.s1_enters ( s2_enters ),
.s2_enters ( s1_enters ),
.s3_enters ( s4_enters ),
.s4_enters ( s3_enters ),
.ch6op ( ch6op ),
.pcm_en ( pcm_en ), // only enabled for channel 6
.pcm ( pcm ),
.alg ( alg ),
// combined output
.left ( snd_left ),
.right ( snd_right ),
.sample ( snd_sample),
// muxed output
.mux_left ( mux_left ),
.mux_right ( mux_right ),
.mux_sample ( mux_sample)
);
`ifdef SIMULATION
reg [4:0] sep24_cnt;
wire [9:0] eg_ch0s1, eg_ch1s1, eg_ch2s1, eg_ch3s1, eg_ch4s1, eg_ch5s1,
eg_ch0s2, eg_ch1s2, eg_ch2s2, eg_ch3s2, eg_ch4s2, eg_ch5s2,
eg_ch0s3, eg_ch1s3, eg_ch2s3, eg_ch3s3, eg_ch4s3, eg_ch5s3,
eg_ch0s4, eg_ch1s4, eg_ch2s4, eg_ch3s4, eg_ch4s4, eg_ch5s4;
always @(posedge clk)
sep24_cnt <= !zero ? sep24_cnt+1'b1 : 5'd0;
sep24 #( .width(10), .pos0(5'd0)) egsep
(
.clk ( clk ),
.mixed ( eg_IX ),
.mask ( 10'd0 ),
.cnt ( sep24_cnt ),
.ch0s1 (eg_ch0s1),
.ch1s1 (eg_ch1s1),
.ch2s1 (eg_ch2s1),
.ch3s1 (eg_ch3s1),
.ch4s1 (eg_ch4s1),
.ch5s1 (eg_ch5s1),
.ch0s2 (eg_ch0s2),
.ch1s2 (eg_ch1s2),
.ch2s2 (eg_ch2s2),
.ch3s2 (eg_ch3s2),
.ch4s2 (eg_ch4s2),
.ch5s2 (eg_ch5s2),
.ch0s3 (eg_ch0s3),
.ch1s3 (eg_ch1s3),
.ch2s3 (eg_ch2s3),
.ch3s3 (eg_ch3s3),
.ch4s3 (eg_ch4s3),
.ch5s3 (eg_ch5s3),
.ch0s4 (eg_ch0s4),
.ch1s4 (eg_ch1s4),
.ch2s4 (eg_ch2s4),
.ch3s4 (eg_ch3s4),
.ch4s4 (eg_ch4s4),
.ch5s4 (eg_ch5s4)
);
`endif
`endif
endmodule

View File

@ -0,0 +1,112 @@
/* This file is part of JT12.
JT12 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 14-2-2017
YM3438_APL.pdf
Timer A = 144*(1024-NA)/Phi M
Timer B = 2304*(256-NB)/Phi M
*/
`timescale 1ns / 1ps
module jt12_timers(
input clk,
input rst,
input clk_en, // clock enable
input fast_timers,
input [9:0] value_A,
input [7:0] value_B,
input load_A,
input load_B,
input clr_flag_A,
input clr_flag_B,
input enable_irq_A,
input enable_irq_B,
output flag_A,
output flag_B,
output overflow_A,
output irq_n
);
assign irq_n = ~( (flag_A&enable_irq_A) | (flag_B&enable_irq_B) );
jt12_timer #(.mult_width(1), .mult_max(0), .counter_width(10))
timer_A(
.clk ( clk ),
.rst ( rst ),
.clk_en ( clk_en | fast_timers ),
.start_value( value_A ),
.load ( load_A ),
.clr_flag ( clr_flag_A),
.flag ( flag_A ),
.overflow ( overflow_A)
);
jt12_timer #(.mult_width(4), .mult_max(15), .counter_width(8))
timer_B(
.clk ( clk ),
.rst ( rst ),
.clk_en ( clk_en | fast_timers ),
.start_value( value_B ),
.load ( load_B ),
.clr_flag ( clr_flag_B),
.flag ( flag_B ),
.overflow ( )
);
endmodule
module jt12_timer #(parameter counter_width = 10, mult_width=5, mult_max=4 )
(
input clk,
input rst,
(* direct_enable *) input clk_en,
input [counter_width-1:0] start_value,
input load,
input clr_flag,
output reg flag,
output reg overflow
);
reg [ mult_width-1:0] mult;
reg [counter_width-1:0] cnt;
always@(posedge clk)
if( clr_flag || rst)
flag <= 1'b0;
else if(overflow) flag<=1'b1;
reg [mult_width+counter_width-1:0] next, init;
always @(*) begin
if( mult<mult_max )
{overflow, next } <= { {1'b0, cnt}, mult+1'b1 } ;
else
{overflow, next } <= { {1'b0, cnt}+1'b1, {mult_width{1'b0}} };
init <= { start_value, {mult_width{1'b0}} };
end
always @(posedge clk)
if( load || rst) begin
mult <= { (mult_width){1'b0} };
cnt <= start_value;
end
else if( clk_en )
{ cnt, mult } <= overflow ? init : next;
endmodule

92
src/sound/jt12/lut.vh Normal file
View File

@ -0,0 +1,92 @@
/* This file is part of JT12.
JT12 program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
JT12 program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with JT12. If not, see <http://www.gnu.org/licenses/>.
Based on Sauraen VHDL version of OPN/OPN2, which is based on die shots.
Author: Jose Tejada Gomez. Twitter: @topapate
Version: 1.0
Date: 27-1-2017
*/
initial begin
sinetable[5'd0 ] <= 46'b0001100000100100010001000010101010101001010010;
sinetable[5'd1 ] <= 46'b0001100000110100000100000010010001001101000001;
sinetable[5'd2 ] <= 46'b0001100000110100000100110010001011001101100000;
sinetable[5'd3 ] <= 46'b0001110000010000000000110010110001001101110010;
sinetable[5'd4 ] <= 46'b0001110000010000001100000010111010001101101001;
sinetable[5'd5 ] <= 46'b0001110000010100001001100010000000101101111010;
sinetable[5'd6 ] <= 46'b0001110000010100001101100010010011001101011010;
sinetable[5'd7 ] <= 46'b0001110000011100000101010010111000101111111100;
sinetable[5'd8 ] <= 46'b0001110000111000000001110010101110001101110111;
sinetable[5'd9 ] <= 46'b0001110000111000010100111000011101011010100110;
sinetable[5'd10] <= 46'b0001110000111100011000011000111100001001111010;
sinetable[5'd11] <= 46'b0001110000111100011100111001101011001001110111;
sinetable[5'd12] <= 46'b0100100001010000010001011001001000111010110111;
sinetable[5'd13] <= 46'b0100100001010100010001001001110001111100101010;
sinetable[5'd14] <= 46'b0100100001010100010101101101111110100101000110;
sinetable[5'd15] <= 46'b0100100011100000001000011001010110101101111001;
sinetable[5'd16] <= 46'b0100100011100100001000101011100101001011101111;
sinetable[5'd17] <= 46'b0100100011101100000111011010000001011010110001;
sinetable[5'd18] <= 46'b0100110011001000000111101010000010111010111111;
sinetable[5'd19] <= 46'b0100110011001100001011011110101110110110000001;
sinetable[5'd20] <= 46'b0100110011101000011010111011001010001101110001;
sinetable[5'd21] <= 46'b0100110011101101011010110101111001010100001111;
sinetable[5'd22] <= 46'b0111000010000001010111000101010101010110010111;
sinetable[5'd23] <= 46'b0111000010000101010111110111110101010010111011;
sinetable[5'd24] <= 46'b0111000010110101101000101100001000010000011001;
sinetable[5'd25] <= 46'b0111010010011001100100011110100100010010010010;
sinetable[5'd26] <= 46'b0111010010111010100101100101000000110100100011;
sinetable[5'd27] <= 46'b1010000010011010101101011101100001110010011010;
sinetable[5'd28] <= 46'b1010000010111111111100100111010100010000111001;
sinetable[5'd29] <= 46'b1010010111110100110010001100111001010110100000;
sinetable[5'd30] <= 46'b1011010111010011111011011110000100110010100001;
sinetable[5'd31] <= 46'b1110011011110001111011100111100001110110100111;
explut_jt51[0] <= 45'b111110101011010110001011010000010010111011011;
explut_jt51[1] <= 45'b111101010011010101000011001100101110110101011;
explut_jt51[2] <= 45'b111011111011010011110111001000110010101110011;
explut_jt51[3] <= 45'b111010100101010010101111000100110010101000011;
explut_jt51[4] <= 45'b111001001101010001100111000000110010100001011;
explut_jt51[5] <= 45'b110111111011010000011110111101010010011011011;
explut_jt51[6] <= 45'b110110100011001111010110111001010010010100100;
explut_jt51[7] <= 45'b110101001011001110001110110101110010001110011;
explut_jt51[8] <= 45'b110011111011001101000110110001110010001000011;
explut_jt51[9] <= 45'b110010100011001011111110101110010010000010011;
explut_jt51[10] <= 45'b110001010011001010111010101010010001111011011;
explut_jt51[11] <= 45'b101111111011001001110010100110110001110101011;
explut_jt51[12] <= 45'b101110101011001000101010100011001101101111011;
explut_jt51[13] <= 45'b101101010101000111100110011111010001101001011;
explut_jt51[14] <= 45'b101100000011000110100010011011110001100011011;
explut_jt51[15] <= 45'b101010110011000101011110011000010001011101011;
explut_jt51[16] <= 45'b101001100011000100011010010100101101010111011;
explut_jt51[17] <= 45'b101000010011000011010010010001001101010001011;
explut_jt51[18] <= 45'b100111000011000010010010001101101101001011011;
explut_jt51[19] <= 45'b100101110011000001001110001010001101000101011;
explut_jt51[20] <= 45'b100100100011000000001010000110010000111111011;
explut_jt51[21] <= 45'b100011010010111111001010000011001100111001011;
explut_jt51[22] <= 45'b100010000010111110000101111111101100110011011;
explut_jt51[23] <= 45'b100000110010111101000001111100001100101101011;
explut_jt51[24] <= 45'b011111101010111100000001111000101100101000010;
explut_jt51[25] <= 45'b011110011010111011000001110101001100100010011;
explut_jt51[26] <= 45'b011101001010111010000001110001110000011100011;
explut_jt51[27] <= 45'b011100000010111001000001101110010000010110011;
explut_jt51[28] <= 45'b011010110010111000000001101011001100010001011;
explut_jt51[29] <= 45'b011001101010110111000001100111101100001011011;
explut_jt51[30] <= 45'b011000100000110110000001100100010000000110010;
explut_jt51[31] <= 45'b010111010010110101000001100001001100000000011;
end

137
src/sound/turbosound.sv Normal file
View File

@ -0,0 +1,137 @@
//============================================================================
// Turbosound-FM
//
// Copyright (C) 2018 Ilia Sharin
// Copyright (C) 2018 Sorgelig
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
//============================================================================
module turbosound
(
input RESET, // Chip RESET (set all Registers to '0', active high)
input CLK, // Global clock
input CE_CPU, // CPU Clock enable
input CE_YM, // YM2203 Master Clock enable x2 (due to YM2612 model!)
input BDIR, // Bus Direction (0 - read , 1 - write)
input BC, // Bus control
input [7:0] DI, // Data In
output [7:0] DO, // Data Out
output [11:0] CHANNEL_L, // Output channel L
output [11:0] CHANNEL_R, // Output channel R
output ACTIVE
);
// AY1 selected by default
reg ay_select = 1;
reg stat_sel = 1;
reg fm_ena = 0;
always_ff @(posedge CLK or posedge RESET) begin
if (RESET) begin
ay_select <= 1;
stat_sel <= 1;
fm_ena <= 0;
end
else if (BDIR & BC & &DI[7:3]) begin
ay_select <= DI[0];
stat_sel <= DI[1];
fm_ena <= ~DI[2];
end
end
wire [7:0] psg_ch_a_0;
wire [7:0] psg_ch_b_0;
wire [7:0] psg_ch_c_0;
wire [10:0] opn_0;
wire [7:0] DO_0;
wire WE_0 = ~ay_select & BDIR;
wire ay0_playing;
ym2203 ym2203_0
(
.RESET(RESET),
.CLK(CLK),
.CE_CPU(CE_CPU),
.CE_YM(CE_YM),
.A0(WE_0 ? ~BC : stat_sel),
.WE(WE_0),
.DI(DI),
.DO(DO_0),
.CHANNEL_A(psg_ch_a_0),
.CHANNEL_B(psg_ch_b_0),
.CHANNEL_C(psg_ch_c_0),
.CHANNEL_FM(opn_0),
.PSG_ACTIVE(ay0_playing),
.FM_ENA(fm_ena)
);
wire [7:0] psg_ch_a_1;
wire [7:0] psg_ch_b_1;
wire [7:0] psg_ch_c_1;
wire [10:0] opn_1;
wire [7:0] DO_1;
wire WE_1 = ay_select & BDIR;
wire ay1_playing;
ym2203 ym2203_1
(
.RESET(RESET),
.CLK(CLK),
.CE_CPU(CE_CPU),
.CE_YM(CE_YM),
.A0(WE_1 ? ~BC : stat_sel),
.WE(WE_1),
.DI(DI),
.DO(DO_1),
.CHANNEL_A(psg_ch_a_1),
.CHANNEL_B(psg_ch_b_1),
.CHANNEL_C(psg_ch_c_1),
.CHANNEL_FM(opn_1),
.PSG_ACTIVE(ay1_playing),
.FM_ENA(fm_ena)
);
assign DO = ay_select ? DO_1 : DO_0;
assign ACTIVE = ay0_playing | ay1_playing | fm_ena;
// Mix channel signals from both AY/YM chips (extending to 9 bits width to prevent clipping)
wire [8:0] sum_ch_a = { 1'b0, psg_ch_a_1 } + { 1'b0, psg_ch_a_0 };
wire [8:0] sum_ch_b = { 1'b0, psg_ch_b_1 } + { 1'b0, psg_ch_b_0 };
wire [8:0] sum_ch_c = { 1'b0, psg_ch_c_1 } + { 1'b0, psg_ch_c_0 };
// Control output channels (Only AY_1 plays if not in TurboSound mode)
wire [7:0] psg_a = ~ay0_playing ? psg_ch_a_1 : sum_ch_a[8:1];
wire [7:0] psg_b = ~ay0_playing ? psg_ch_b_1 : sum_ch_b[8:1];
wire [7:0] psg_c = ~ay0_playing ? psg_ch_c_1 : sum_ch_c[8:1];
wire signed [11:0] psg_l = {3'b000, psg_a, 1'd0} + {4'b0000, psg_b};
wire signed [11:0] psg_r = {3'b000, psg_c, 1'd0} + {4'b0000, psg_b};
wire signed [11:0] opn_s = {{2{opn_0[10]}}, opn_0[10:1]} + {{2{opn_1[10]}}, opn_1[10:1]};
assign CHANNEL_L = fm_ena ? opn_s + psg_l : psg_l;
assign CHANNEL_R = fm_ena ? opn_s + psg_r : psg_r;
endmodule

View File

@ -1,78 +0,0 @@
-------------------------------------------------------------------[07.09.2013]
-- TurboSound
-------------------------------------------------------------------------------
-- V0.1 15.10.2011 Initial version
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity turbosound is
port(
RESET : in std_logic;
CLK : in std_logic;
ENA : in std_logic;
A : in std_logic_vector(15 downto 0);
DI : in std_logic_vector(7 downto 0);
WR_n : in std_logic;
IORQ_n : in std_logic;
M1_n : in std_logic;
SEL : out std_logic;
CN0_DO : out std_logic_vector(7 downto 0);
CN0_A : out std_logic_vector(7 downto 0);
CN0_B : out std_logic_vector(7 downto 0);
CN0_C : out std_logic_vector(7 downto 0);
CN1_DO : out std_logic_vector(7 downto 0);
CN1_A : out std_logic_vector(7 downto 0);
CN1_B : out std_logic_vector(7 downto 0);
CN1_C : out std_logic_vector(7 downto 0));
end turbosound;
architecture turbosound_arch of turbosound is
signal bc1 : std_logic;
signal bdir : std_logic;
signal ssg : std_logic;
begin
bc1 <= '1' when (IORQ_n = '0' and A(15) = '1' and A(1) = '0' and M1_n = '1' and A(14) = '1') else '0';
bdir <= '1' when (IORQ_n = '0' and A(15) = '1' and A(1) = '0' and M1_n = '1' and WR_n = '0') else '0';
SEL <= ssg;
process(CLK, RESET)
begin
if (RESET = '1') then
ssg <= '0';
elsif (CLK'event and CLK = '1') then
if (DI(7 downto 1) = "1111111" and bdir = '1' and bc1 = '1') then
ssg <= DI(0);
end if;
end if;
end process;
ssg0_unit: entity work.ay8910(rtl)
port map(
RESET => RESET,
CLK => CLK,
DI => DI,
DO => CN0_DO,
ENA => ENA,
CS => not ssg,
BDIR => bdir,
BC => bc1,
OUT_A => CN0_A,
OUT_B => CN0_B,
OUT_C => CN0_C);
ssg1_unit: entity work.ay8910(rtl)
port map(
RESET => RESET,
CLK => CLK,
DI => DI,
DO => CN1_DO,
ENA => ENA,
CS => ssg,
BDIR => bdir,
BC => bc1,
OUT_A => CN1_A,
OUT_B => CN1_B,
OUT_C => CN1_C);
end turbosound_arch;

354
src/sound/ym2149.sv Normal file
View File

@ -0,0 +1,354 @@
//
// Copyright (c) MikeJ - Jan 2005
// Copyright (c) 2016-2018 Sorgelig
//
// All rights reserved
//
// Redistribution and use in source and synthezised forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// Redistributions in synthesized form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// Neither the name of the author nor the names of other contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// BDIR BC MODE
// 0 0 inactive
// 0 1 read value
// 1 0 write value
// 1 1 set address
//
// Registers description
// R0, R1, R2, R4, R4, R5 - Tone Generator Control
// R6 - Noise Generator Control
// R7 - Mixer Control-I/O Enable
// R10, R11, R12 - Amplitude Control
// R13, R14, R15 - Envelope Generator Control
// R13, R14 - Envelope Period Control
// R15 - Envelope Shape/Cycle Control
module ym2149
(
input CLK, // Global clock
input CE, // PSG Clock enable
input RESET, // Chip RESET (set all Registers to '0', active hi)
input BDIR, // Bus Direction (0 - read , 1 - write)
input BC, // Bus control
input [7:0] DI, // Data In
output [7:0] DO, // Data Out
output [7:0] CHANNEL_A, // PSG Output channel A
output [7:0] CHANNEL_B, // PSG Output channel B
output [7:0] CHANNEL_C, // PSG Output channel C
input SEL,
input MODE,
output [5:0] ACTIVE,
input [7:0] IOA_in,
output [7:0] IOA_out,
input [7:0] IOB_in,
output [7:0] IOB_out
);
assign ACTIVE = ~ymreg[7][5:0];
assign IOA_out = ymreg[14];
assign IOB_out = ymreg[15];
reg ena_div;
reg ena_div_noise;
reg [7:0] addr;
reg [7:0] ymreg[16];
reg env_ena;
reg [4:0] env_vol;
wire [7:0] volTableAy[16] =
'{8'h00, 8'h03, 8'h04, 8'h06,
8'h0a, 8'h0f, 8'h15, 8'h22,
8'h28, 8'h41, 8'h5b, 8'h72,
8'h90, 8'hb5, 8'hd7, 8'hff
};
wire [7:0] volTableYm[32] =
'{8'h00, 8'h01, 8'h01, 8'h02,
8'h02, 8'h03, 8'h03, 8'h04,
8'h06, 8'h07, 8'h09, 8'h0a,
8'h0c, 8'h0e, 8'h11, 8'h13,
8'h17, 8'h1b, 8'h20, 8'h25,
8'h2c, 8'h35, 8'h3e, 8'h47,
8'h54, 8'h66, 8'h77, 8'h88,
8'ha1, 8'hc0, 8'he0, 8'hff
};
// Read from AY
assign DO = dout;
reg [7:0] dout;
always_comb begin
if(addr[7:4]) dout <= 8'hFF;
else begin
case(addr[3:0])
0: dout = ymreg[0];
1: dout = ymreg[1][3:0];
2: dout = ymreg[2];
3: dout = ymreg[3][3:0];
4: dout = ymreg[4];
5: dout = ymreg[5][3:0];
6: dout = ymreg[6][4:0];
7: dout = ymreg[7];
8: dout = ymreg[8][4:0];
9: dout = ymreg[9][4:0];
10: dout = ymreg[10][4:0];
11: dout = ymreg[11];
12: dout = ymreg[12];
13: dout = ymreg[13][3:0];
14: dout = (ymreg[7][6] ? ymreg[14] : IOA_in);
15: dout = (ymreg[7][7] ? ymreg[15] : IOB_in);
endcase
end
end
// p_divider
always @(posedge CLK) begin
reg [3:0] cnt_div;
reg noise_div;
if(CE) begin
ena_div <= 0;
ena_div_noise <= 0;
if(!cnt_div) begin
cnt_div <= {SEL, 3'b111};
ena_div <= 1;
noise_div <= (~noise_div);
if (noise_div) ena_div_noise <= 1;
end else begin
cnt_div <= cnt_div - 1'b1;
end
end
end
reg noise_gen_op;
// p_noise_gen
always @(posedge CLK) begin
reg [16:0] poly17;
reg [4:0] noise_gen_cnt;
if(CE) begin
if (ena_div_noise) begin
if(ymreg[6][4:0]) begin
if (noise_gen_cnt >= ymreg[6][4:0] - 1'd1) begin
noise_gen_cnt <= 0;
poly17 <= {(poly17[0] ^ poly17[2] ^ !poly17), poly17[16:1]};
end else begin
noise_gen_cnt <= noise_gen_cnt + 1'd1;
end
noise_gen_op <= poly17[0];
end else begin
noise_gen_op <= 0;
noise_gen_cnt <= 0;
end
end
end
end
wire [11:0] tone_gen_freq[1:3];
assign tone_gen_freq[1] = {ymreg[1][3:0], ymreg[0]};
assign tone_gen_freq[2] = {ymreg[3][3:0], ymreg[2]};
assign tone_gen_freq[3] = {ymreg[5][3:0], ymreg[4]};
reg [3:1] tone_gen_op;
//p_tone_gens
always @(posedge CLK) begin
integer i;
reg [11:0] tone_gen_cnt[1:3];
if(CE) begin
// looks like real chips count up - we need to get the Exact behaviour ..
for (i = 1; i <= 3; i = i + 1) begin
if(ena_div) begin
if (tone_gen_freq[i]) begin
if (tone_gen_cnt[i] >= (tone_gen_freq[i] - 1'd1)) begin
tone_gen_cnt[i] <= 0;
tone_gen_op[i] <= ~tone_gen_op[i];
end else begin
tone_gen_cnt[i] <= tone_gen_cnt[i] + 1'd1;
end
end else begin
tone_gen_op[i] <= 0;
tone_gen_cnt[i] <= 0;
end
end
end
end
end
wire [15:0] env_gen_comp = {ymreg[12], ymreg[11]} ? {ymreg[12], ymreg[11]} - 1'd1 : 16'd0;
//p_envelope_freq
always @(posedge CLK) begin
reg [15:0] env_gen_cnt;
if(CE) begin
env_ena <= 0;
if(ena_div) begin
if (env_gen_cnt >= env_gen_comp) begin
env_gen_cnt <= 0;
env_ena <= 1;
end else begin
env_gen_cnt <= (env_gen_cnt + 1'd1);
end
end
end
end
wire is_bot = (env_vol == 5'b00000);
wire is_bot_p1 = (env_vol == 5'b00001);
wire is_top_m1 = (env_vol == 5'b11110);
wire is_top = (env_vol == 5'b11111);
always @(posedge CLK) begin
reg old_BDIR;
reg env_reset;
reg env_hold;
reg env_inc;
// envelope shapes
// C AtAlH
// 0 0 x x \___
//
// 0 1 x x /___
//
// 1 0 0 0 \\\\
//
// 1 0 0 1 \___
//
// 1 0 1 0 \/\/
// ___
// 1 0 1 1 \
//
// 1 1 0 0 ////
// ___
// 1 1 0 1 /
//
// 1 1 1 0 /\/\
//
// 1 1 1 1 /___
if(RESET) begin
ymreg[0] <= '0;
ymreg[1] <= '0;
ymreg[2] <= '0;
ymreg[3] <= '0;
ymreg[4] <= '0;
ymreg[5] <= '0;
ymreg[6] <= '0;
ymreg[7] <= '1;
ymreg[8] <= '0;
ymreg[9] <= '0;
ymreg[10] <= '0;
ymreg[11] <= '0;
ymreg[12] <= '0;
ymreg[13] <= '0;
ymreg[14] <= '0;
ymreg[15] <= '0;
addr <= '0;
env_vol <= '0;
end else begin
old_BDIR <= BDIR;
if(~old_BDIR & BDIR) begin
if(BC) addr <= DI;
else if(!addr[7:4])begin
ymreg[addr[3:0]] <= DI;
env_reset <= (addr == 13);
end
end
end
if(CE) begin
if(env_reset) begin
env_reset <= 0;
// load initial state
if(!ymreg[13][2]) begin // attack
env_vol <= 5'b11111;
env_inc <= 0; // -1
end else begin
env_vol <= 5'b00000;
env_inc <= 1; // +1
end
env_hold <= 0;
end else begin
if (env_ena) begin
if (!env_hold) begin
if (env_inc) env_vol <= (env_vol + 5'b00001);
else env_vol <= (env_vol + 5'b11111);
end
// envelope shape control.
if(!ymreg[13][3]) begin
if(!env_inc) begin // down
if(is_bot_p1) env_hold <= 1;
end else if (is_top) env_hold <= 1;
end else if(ymreg[13][0]) begin // hold = 1
if(!env_inc) begin // down
if(ymreg[13][1]) begin // alt
if(is_bot) env_hold <= 1;
end else if(is_bot_p1) env_hold <= 1;
end else if(ymreg[13][1]) begin // alt
if(is_top) env_hold <= 1;
end else if(is_top_m1) env_hold <= 1;
end else if(ymreg[13][1]) begin // alternate
if(env_inc == 1'b0) begin // down
if(is_bot_p1) env_hold <= 1;
if(is_bot) begin
env_hold <= 0;
env_inc <= 1;
end
end else begin
if(is_top_m1) env_hold <= 1;
if(is_top) begin
env_hold <= 0;
env_inc <= 0;
end
end
end
end
end
end
end
wire [4:0] A = ~((ymreg[7][0] | tone_gen_op[1]) & (ymreg[7][3] | noise_gen_op)) ? 5'd0 : ymreg[8][4] ? env_vol[4:0] : { ymreg[8][3:0], ymreg[8][3]};
wire [4:0] B = ~((ymreg[7][1] | tone_gen_op[2]) & (ymreg[7][4] | noise_gen_op)) ? 5'd0 : ymreg[9][4] ? env_vol[4:0] : { ymreg[9][3:0], ymreg[9][3]};
wire [4:0] C = ~((ymreg[7][2] | tone_gen_op[3]) & (ymreg[7][5] | noise_gen_op)) ? 5'd0 : ymreg[10][4] ? env_vol[4:0] : {ymreg[10][3:0], ymreg[10][3]};
assign CHANNEL_A = MODE ? volTableAy[A[4:1]] : volTableYm[A];
assign CHANNEL_B = MODE ? volTableAy[B[4:1]] : volTableYm[B];
assign CHANNEL_C = MODE ? volTableAy[C[4:1]] : volTableYm[C];
endmodule

130
src/sound/ym2203.sv Normal file
View File

@ -0,0 +1,130 @@
//============================================================================
// YM2203 wrapper
// Copyright (C) 2018 Sorgelig
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
//============================================================================
module ym2203
(
input RESET,
input CLK, // Global clock
input CE_CPU, // CPU Clock enable
input CE_YM, // YM2203 Master Clock enable x2 (due to YM2612 model!)
input A0, // 0 - register number/read FM, 1 - data/read PSG
input WE, // 0 - read , 1 - write
input [7:0] DI, // Data In
output [7:0] DO, // Data Out
output [7:0] CHANNEL_A, // PSG Output channel A
output [7:0] CHANNEL_B, // PSG Output channel B
output [7:0] CHANNEL_C, // PSG Output channel C
output [10:0] CHANNEL_FM,// FM Output channel
output PSG_ACTIVE,
input FM_ENA
);
reg [7:0] ymreg;
reg [1:0] pres;
always @(posedge CLK) begin
if(RESET) pres <= 2;
else if(CE_CPU & WE) begin
if(FM_ENA) begin
if(~A0) ymreg <= DI;
else begin
case(ymreg)
'h2d: pres[1] <= 1;
'h2e: pres[0] <= 1;
'h2f: pres <= 0;
endcase
end
end
end
end
wire [2:0] opn_tbl[4] = '{1,1,5,2};
wire [2:0] opn_pres = opn_tbl[pres];
wire [2:0] psg_tbl[4] = '{0,0,3,1};
wire [2:0] psg_pres = psg_tbl[pres];
reg ce_psg_pre, ce_opn_pre;
always @(posedge CLK) begin
reg [2:0] div_psg, div_opn;
{ce_opn_pre, ce_psg_pre} <= 0;
if(RESET) {div_opn, div_psg} <= 0;
else if (CE_YM) begin
div_opn <= div_opn + 1'd1;
if(div_opn >= opn_pres) div_opn <= 0;
ce_opn_pre <= !div_opn;
div_psg <= div_psg + 1'd1;
if(div_psg >= psg_pres) div_psg <= 0;
ce_psg_pre <= !div_psg;
end
end
reg ce_opn, ce_psg;
always @(negedge CLK) {ce_opn, ce_psg} <= {ce_opn_pre, ce_psg_pre};
wire [5:0] psg_active;
wire [7:0] psg_dout;
ym2149 ym2149
(
.CLK(CLK),
.CE(ce_psg),
.RESET(RESET),
.BDIR(WE),
.BC(~A0),
.DI(DI),
.DO(psg_dout),
.CHANNEL_A(CHANNEL_A),
.CHANNEL_B(CHANNEL_B),
.CHANNEL_C(CHANNEL_C),
.ACTIVE(psg_active),
.SEL(1'b0),
.MODE(1'b0)
);
wire [7:0] opn_dout;
wire [11:0] opn_audio;
jt12 jt12
(
.rst(RESET),
.cpu_clk(CLK & CE_CPU),
.cpu_din(DI),
.cpu_dout(opn_dout),
.cpu_addr({1'b0,A0}),
.cpu_cs_n(~FM_ENA),
.cpu_wr_n(~WE),
.syn_clk(CLK & ce_opn),
.cpu_limiter_en(1'b1),
.syn_snd_right(opn_audio)
);
assign DO = A0 ? psg_dout : opn_dout;
assign PSG_ACTIVE = |psg_active;
assign CHANNEL_FM = opn_audio[10:0];
endmodule

View File

@ -158,7 +158,6 @@ wire dram_rnw;
// Port
reg [7:0] port_xxfe_reg;
reg [7:0] port_xx01_reg;
reg ena_1_75mhz;
reg [5:0] ena_cnt;
// System
wire reset;
@ -184,16 +183,6 @@ wire [7:0] covox_a;
wire [7:0] covox_b;
wire [7:0] covox_c;
wire [7:0] covox_d;
// TurboSound
wire ssg_sel;
wire [7:0] ssg_cn0_bus;
wire [7:0] ssg_cn0_a;
wire [7:0] ssg_cn0_b;
wire [7:0] ssg_cn0_c;
wire [7:0] ssg_cn1_bus;
wire [7:0] ssg_cn1_a;
wire [7:0] ssg_cn1_b;
wire [7:0] ssg_cn1_c;
// clock
wire f0;
wire f1;
@ -865,28 +854,38 @@ soundrive SE10
.outd(covox_d)
);
// TurboSound
reg ce_ym, ce_cpu;
always @(posedge clk_28mhz) begin
reg [1:0] div;
div <= div + 1'd1;
ce_ym <= !div;
ce_cpu <= zclk;
if(ce_cpu) ce_cpu <= 0;
end
wire ts_enable = cpu_a_bus[0] & cpu_a_bus[15] & ~cpu_a_bus[1];
wire ts_we = ts_enable & ~cpu_iorq_n & ~cpu_wr_n;
wire [11:0] ts_l, ts_r;
wire [7:0] ts_do;
turbosound SE12
(
.reset(reset),
.clk(clk_28mhz),
.ena(ena_1_75mhz),
.a(cpu_a_bus),
.di(cpu_do_bus),
.wr_n(cpu_wr_n),
.iorq_n(cpu_iorq_n),
.m1_n(cpu_m1_n),
.sel(ssg_sel),
.cn0_do(ssg_cn0_bus),
.cn0_a(ssg_cn0_a),
.cn0_b(ssg_cn0_b),
.cn0_c(ssg_cn0_c),
.cn1_do(ssg_cn1_bus),
.cn1_a(ssg_cn1_a),
.cn1_b(ssg_cn1_b),
.cn1_c(ssg_cn1_c)
);
(
.RESET(reset),
.CLK(clk_28mhz),
.CE_CPU(ce_cpu),
.CE_YM(ce_ym),
.BDIR(ts_we),
.BC(cpu_a_bus[14]),
.DI(cpu_do_bus),
.DO(ts_do),
.CHANNEL_L(ts_l),
.CHANNEL_R(ts_r)
);
always @(posedge clk_84mhz) begin
ce_gs <= clk_28mhz;
if(ce_gs) ce_gs <= 0;
@ -937,7 +936,6 @@ assign RESET_OUT = reset;
always @(negedge clk_28mhz) begin
ena_cnt <= ena_cnt + 1'd1;
ena_1_75mhz <= ~ena_cnt[3] & ena_cnt[2] & ena_cnt[1] & ena_cnt[0];
ena_0_4375mhz <= ~ena_cnt[5] & ena_cnt[4] & ena_cnt[3] & ena_cnt[2] & ena_cnt[1] & ena_cnt[0];
end
@ -953,8 +951,7 @@ assign cpu_di_bus = (loader && ~cpu_mreq_n && ~cpu_rd_n && !cpu_a_bus[15:13]) ?
(intack) ? im2vect :
(~cpu_iorq_n && ~cpu_rd_n && port_bff7 && port_eff7_reg[7]) ? mc146818a_do_bus : // MC146818A
(gs_sel && ~cpu_rd_n) ? gs_do_bus : // General Sound
(~cpu_iorq_n && ~cpu_rd_n && cpu_a_bus == 16'hFFFD && ~ssg_sel) ? ssg_cn0_bus : // TurboSound
(~cpu_iorq_n && ~cpu_rd_n && cpu_a_bus == 16'hFFFD && ssg_sel) ? ssg_cn1_bus :
(~cpu_iorq_n && ~cpu_rd_n && ts_enable) ? ts_do : // TurboSound
(~cpu_iorq_n && ~cpu_rd_n && cpu_a_bus == 16'h0001) ? key_scancode :
(ena_ports) ? dout_ports :
8'b11111111;
@ -993,7 +990,7 @@ assign port_bff7 = ~cpu_iorq_n && cpu_a_bus == 16'hBFF7 && cpu_m1_n && port_eff7
// SAA1099
assign saa_wr_n = ~cpu_iorq_n && ~cpu_wr_n && cpu_a_bus[7:0] == 8'hFF && ~dos;
assign SOUND_L = ({3'b000, port_xxfe_reg[4], 12'b000000000000}) + ({3'b000, ssg_cn0_a, 5'b00000}) + ({4'b0000, ssg_cn0_b, 4'b0000}) + ({3'b000, ssg_cn1_a, 5'b00000}) + ({4'b0000, ssg_cn1_b, 4'b0000}) + ({2'b00, covox_a, 6'b000000}) + ({2'b00, covox_b, 6'b000000}) + ({gs_l[14], gs_l}) + ({1'b0, saa_out_l, 7'b0000000});
assign SOUND_R = ({3'b000, port_xxfe_reg[4], 12'b000000000000}) + ({3'b000, ssg_cn0_c, 5'b00000}) + ({4'b0000, ssg_cn0_b, 4'b0000}) + ({3'b000, ssg_cn1_c, 5'b00000}) + ({4'b0000, ssg_cn1_b, 4'b0000}) + ({2'b00, covox_c, 6'b000000}) + ({2'b00, covox_d, 6'b000000}) + ({gs_r[14], gs_r}) + ({1'b0, saa_out_r, 7'b0000000});
assign SOUND_L = {ts_l, 4'b0000} + {gs_l[14], gs_l} + {2'b00, covox_a, 6'b000000} + {2'b00, covox_b, 6'b000000} + {1'b0, saa_out_l, 7'b0000000} + {3'b000, port_xxfe_reg[4], 12'b000000000000};
assign SOUND_R = {ts_r, 4'b0000} + {gs_r[14], gs_r} + {2'b00, covox_c, 6'b000000} + {2'b00, covox_d, 6'b000000} + {1'b0, saa_out_r, 7'b0000000} + {3'b000, port_xxfe_reg[4], 12'b000000000000};
endmodule