update tsconf to commit 83afbba6f5d366f96297028aa3d64512fa254a51

This commit is contained in:
Eugene Lozovoy
2024-09-12 16:28:38 +03:00
parent ba7d903e12
commit 3681138b01
47 changed files with 5648 additions and 4341 deletions

429
rtl/common/dma.v Normal file
View File

@ -0,0 +1,429 @@
// This module serves direct DRAM-to-device data transfer
`include "tune.v"
module dma
(
// clocks
input wire clk,
input wire c2,
input wire rst_n,
// interface
`ifdef FDR
input wire [9:0] dmaport_wr,
`else
input wire [8:0] dmaport_wr,
`endif
output wire dma_act,
output reg [15:0] data = 0,
output wire [ 7:0] wraddr,
output wire int_start,
// Z80
input wire [7:0] zdata,
// DRAM interface
output wire [20:0] dram_addr,
input wire [15:0] dram_rddata,
output wire [15:0] dram_wrdata,
output wire dram_req,
output wire dram_rnw,
input wire dram_next,
// SPI interface
input wire [7:0] spi_rddata,
output wire [7:0] spi_wrdata,
output wire spi_req,
input wire spi_stb,
// WTPORT interface
input wire [7:0] wtp_rddata,
// output wire [7:0] wtp_wrdata,
output wire wtp_req,
input wire wtp_stb,
// IDE interface
input wire [15:0] ide_in,
output wire [15:0] ide_out,
output wire ide_req,
output wire ide_rnw,
input wire ide_stb,
`ifdef FDR
// FDD interface
input wire [7:0] fdr_in,
output wire fdr_req,
input wire fdr_stb,
input wire fdr_stop,
`endif
// CRAM interface
output wire cram_we,
// SFILE interface
output wire sfile_we
);
// mode:
// 0 - device to RAM (read from device)
// 1 - RAM to device (write to device)
wire dma_saddrl = dmaport_wr[0];
wire dma_saddrh = dmaport_wr[1];
wire dma_saddrx = dmaport_wr[2];
wire dma_daddrl = dmaport_wr[3];
wire dma_daddrh = dmaport_wr[4];
wire dma_daddrx = dmaport_wr[5];
wire dma_len = dmaport_wr[6];
wire dma_launch = dmaport_wr[7];
wire dma_num = dmaport_wr[8];
`ifdef FDR
wire dma_numh = dmaport_wr[9];
`endif
// devices
localparam DEV_RAM = 3'b001;
localparam DEV_BLT1 = 4'b1001;
`ifdef XTR_FEAT
localparam DEV_BLT2 = 4'b0110;
`endif
localparam DEV_FIL = 4'b0100;
localparam DEV_SPI = 3'b010;
localparam DEV_IDE = 3'b011;
localparam DEV_CRM = 4'b1100;
localparam DEV_SFL = 4'b1101;
localparam DEV_FDD = 4'b0101;
localparam DEV_WTP = 4'b0111;
wire state_dev;
wire ide_int_stb;
wire byte_sw_stb;
wire spi_int_stb;
wire wtp_int_stb;
reg dma_salgn;
reg dma_dalgn;
reg dma_asz;
reg phase; // 0 - read / 1 - write
reg phase_blt; // 0 - source / 1 - destination
reg bsel; // 0 - lsb / 1 - msb
reg dma_opt;
reg [3:0] device;
wire [2:0] dev_bid = device[2:0]; // bidirectional
wire [3:0] dev_uni = device[3:0]; // unidirectional
wire dma_wnr = device[3]; // 0 - device to RAM / 1 - RAM to device
`ifdef XTR_FEAT
wire dv_ram = (dev_uni == DEV_RAM) || (dev_uni == DEV_BLT1) || (dev_uni == DEV_BLT2) || (dev_uni == DEV_FIL);
wire dv_blt = (dev_uni == DEV_BLT1) || (dev_uni == DEV_BLT2);
`else
wire dv_ram = (dev_uni == DEV_RAM) || (dev_uni == DEV_BLT1) || (dev_uni == DEV_FIL);
wire dv_blt = (dev_uni == DEV_BLT1);
`endif
wire dv_fil = (dev_uni == DEV_FIL);
wire dv_spi = (dev_bid == DEV_SPI);
wire dv_ide = (dev_bid == DEV_IDE);
wire dv_crm = (dev_uni == DEV_CRM);
wire dv_sfl = (dev_uni == DEV_SFL);
wire dv_wtp = (dev_uni == DEV_WTP);
`ifdef FDR
wire dv_fdd = (dev_uni == DEV_FDD);
`endif
wire dev_req = dma_act && state_dev;
wire dev_stb = cram_we || sfile_we || ide_int_stb || (byte_sw_stb && bsel && dma_act);
`ifdef FDR
assign byte_sw_stb = spi_int_stb || wtp_int_stb || fdr_int_stb;
`else
assign byte_sw_stb = spi_int_stb || wtp_int_stb;
`endif
// blitter
// Mode 1
wire [7:0] blt1_data10 = |data[7:0] ? data[7:0] : dram_rddata[7:0];
wire [7:0] blt1_data32 = |data[15:8] ? data[15:8] : dram_rddata[15:8];
wire [3:0] blt1_data0 = |data[3:0] ? data[3:0] : dram_rddata[3:0];
wire [3:0] blt1_data1 = |data[7:4] ? data[7:4] : dram_rddata[7:4];
wire [3:0] blt1_data2 = |data[11:8] ? data[11:8] : dram_rddata[11:8];
wire [3:0] blt1_data3 = |data[15:12] ? data[15:12] : dram_rddata[15:12];
wire [7:0] blt1_data_l = dma_asz ? blt1_data10 : {blt1_data1, blt1_data0};
wire [7:0] blt1_data_h = dma_asz ? blt1_data32 : {blt1_data3, blt1_data2};
wire [15:0] blt1_rddata = {blt1_data_h, blt1_data_l};
`ifdef XTR_FEAT
// Mode 2
localparam msk = 8'd255;
wire [8:0] sum80 = data[7:0] + dram_rddata[7:0];
wire [8:0] sum81 = data[15:8] + dram_rddata[15:8];
wire [4:0] sum40 = data[3:0] + dram_rddata[3:0];
wire [4:0] sum41 = data[7:4] + dram_rddata[7:4];
wire [4:0] sum42 = data[11:8] + dram_rddata[11:8];
wire [4:0] sum43 = data[15:12] + dram_rddata[15:12];
wire [7:0] blt2_8_data0 = ((sum80 > msk) && dma_opt) ? msk : sum80[7:0];
wire [7:0] blt2_8_data1 = ((sum81 > msk) && dma_opt) ? msk : sum81[7:0];
wire [3:0] blt2_4_data0 = ((sum40 > msk[3:0]) && dma_opt) ? msk[3:0] : sum40[3:0];
wire [3:0] blt2_4_data1 = ((sum41 > msk[3:0]) && dma_opt) ? msk[3:0] : sum41[3:0];
wire [3:0] blt2_4_data2 = ((sum42 > msk[3:0]) && dma_opt) ? msk[3:0] : sum42[3:0];
wire [3:0] blt2_4_data3 = ((sum43 > msk[3:0]) && dma_opt) ? msk[3:0] : sum43[3:0];
wire [7:0] blt2_data_0 = dma_asz ? blt2_8_data0 : {blt2_4_data1, blt2_4_data0};
wire [7:0] blt2_data_1 = dma_asz ? blt2_8_data1 : {blt2_4_data3, blt2_4_data2};
wire [15:0] blt2_rddata = {blt2_data_1, blt2_data_0};
wire [15:0] blt_rddata = (dev_uni == DEV_BLT1) ? blt1_rddata : blt2_rddata;
`else // XTR_FEAT
wire [15:0] blt_rddata = blt1_rddata;
`endif
// states
wire state_rd = ~phase;
wire state_wr = phase;
assign state_dev = !dv_ram && (dma_wnr ^ !phase);
wire state_mem = dv_ram || (dma_wnr ^ phase);
// states processing
wire blt_hook = dv_blt && !phase_blt && !phase;
wire phase_end_ram = state_mem && dram_next && !blt_hook;
wire phase_end_dev = state_dev && dev_stb;
wire phase_end = phase_end_ram || phase_end_dev;
wire fil_hook = dv_fil && phase;
wire phase_blt_end = state_mem && dram_next && !phase;
// blitter cycles:
// phase phase_blt blt_hook activity
// 0 0 1 read src
// 0 1 0 read dst
// 1 1 0 write dst
always @(posedge clk)
if (dma_launch) // write to DMACtrl - launch of DMA burst
begin
dma_opt <= zdata[6];
dma_salgn <= zdata[5];
dma_dalgn <= zdata[4];
dma_asz <= zdata[3];
device <= {zdata[7], zdata[2:0]};
phase <= 1'b0;
phase_blt <= 1'b0;
bsel <= 1'b0;
end
else
begin
if (phase_end && !fil_hook)
phase <= ~phase;
if (phase_blt_end)
phase_blt <= ~phase_blt;
if (byte_sw_stb)
bsel <= ~bsel;
end
// data aquiring
always @(posedge clk)
if (state_rd)
begin
if (dram_next)
data <= (dv_blt && phase_blt) ? blt_rddata : dram_rddata;
if (ide_int_stb)
data <= ide_in;
if (spi_int_stb)
begin
if (bsel)
data[15:8] <= spi_rddata;
else
data[7:0] <= spi_rddata;
end
if (wtp_int_stb)
begin
if (bsel)
data[15:8] <= wtp_rddata;
else
data[7:0] <= wtp_rddata;
end
`ifdef FDR
if (fdr_int_stb)
begin
if (bsel)
data[15:8] <= fdr_in;
else
data[7:0] <= fdr_in;
end
`endif
end
// counter processing
reg [7:0] b_len; // length of burst
reg [7:0] b_ctr; // counter for cycles in burst
wire [8:0] b_ctr_dec = {1'b0, b_ctr[7:0]} - 9'b1;
wire next_burst = b_ctr_dec[8];
wire [7:0] b_ctr_next = next_burst ? b_len : b_ctr_dec[7:0];
`ifdef FDR
reg [9:0] b_num; // number of bursts
reg [10:0] n_ctr; // counter for bursts
wire [10:0] n_ctr_dec = n_ctr - next_burst;
assign dma_act = !n_ctr[10];
`else
reg [7:0] b_num; // number of bursts
reg [8:0] n_ctr; // counter for bursts
wire [8:0] n_ctr_dec = n_ctr - next_burst;
assign dma_act = !n_ctr[8];
`endif
always @(posedge clk)
`ifdef FDR
if (!rst_n || (dv_fdd && fdr_stop))
n_ctr[10] <= 1'b1;
`else
if (!rst_n)
n_ctr[8] <= 1'b1;
`endif
else if (dma_launch)
begin
b_ctr <= b_len;
n_ctr <= {1'b0, b_num};
end
else if (phase && phase_end) // cycle processed
begin
b_ctr <= b_ctr_next;
n_ctr <= n_ctr_dec;
end
// loading of burst parameters
always @(posedge clk)
begin
if (dma_len)
b_len <= zdata;
if (dma_num)
`ifdef FDR
b_num[7:0] <= zdata;
if (dma_numh)
b_num[9:8] <= zdata[1:0];
`else
b_num <= zdata;
`endif
end
// address processing
// source
reg [20:0] s_addr; // current source address
reg [7:0] s_addr_r; // source lower address
wire [8:0] s_addr_inc_l = {1'b0, s_addr[7:0]} + 9'b1;
wire [1:0] s_addr_add_h = dma_salgn ? {next_burst && dma_asz, next_burst && !dma_asz} : {s_addr_inc_l[8], 1'b0};
wire [13:0] s_addr_next_h = s_addr[20:7] + s_addr_add_h;
wire [7:0] s_addr_next_l = (dma_salgn && next_burst) ? s_addr_r : s_addr_inc_l[7:0];
wire s_addr_next_m = dma_salgn ? (dma_asz ? s_addr_next_l[7] : s_addr_next_h[0]) : s_addr_inc_l[7];
wire [20:0] s_addr_next = {s_addr_next_h[13:1], s_addr_next_m, s_addr_next_l[6:0]};
always @(posedge clk)
if ((dram_next || dev_stb) && state_rd && (!dv_blt || !phase_blt)) // increment RAM source addr
s_addr <= s_addr_next;
else
begin
if (dma_saddrl)
begin
s_addr[6:0] <= zdata[7:1];
s_addr_r[6:0] <= zdata[7:1];
end
if (dma_saddrh)
begin
s_addr[12:7] <= zdata[5:0];
s_addr_r[7] <= zdata[0];
end
if (dma_saddrx)
s_addr[20:13] <= zdata;
end
// destination
reg [20:0] d_addr; // current dest address
reg [7:0] d_addr_r; // dest lower address
wire [8:0] d_addr_inc_l = {1'b0, d_addr[7:0]} + 9'b1;
wire [1:0] d_addr_add_h = dma_dalgn ? {next_burst && dma_asz, next_burst && !dma_asz} : {d_addr_inc_l[8], 1'b0};
wire [13:0] d_addr_next_h = d_addr[20:7] + d_addr_add_h;
wire [7:0] d_addr_next_l = (dma_dalgn && next_burst) ? d_addr_r : d_addr_inc_l[7:0];
wire d_addr_next_m = dma_dalgn ? (dma_asz ? d_addr_next_l[7] : d_addr_next_h[0]) : d_addr_inc_l[7];
wire [20:0] d_addr_next = {d_addr_next_h[13:1], d_addr_next_m, d_addr_next_l[6:0]};
always @(posedge clk)
if ((dram_next || dev_stb) && state_wr) // increment RAM dest addr
d_addr <= d_addr_next;
else
begin
if (dma_daddrl)
begin
d_addr[6:0] <= zdata[7:1];
d_addr_r[6:0] <= zdata[7:1];
end
if (dma_daddrh)
begin
d_addr[12:7] <= zdata[5:0];
d_addr_r[7] <= zdata[0];
end
if (dma_daddrx)
d_addr[20:13] <= zdata;
end
// INT generation
reg dma_act_r = 0;
always @(posedge clk)
dma_act_r <= dma_act && rst_n;
assign int_start = !dma_act && dma_act_r;
assign wraddr = d_addr[7:0];
// DRAM
assign dram_addr = state_rd ? ((!dv_blt || !phase_blt) ? s_addr : d_addr) : d_addr;
assign dram_wrdata = data;
assign dram_req = dma_act && state_mem;
assign dram_rnw = state_rd;
assign cram_we = dev_req && dv_crm && state_wr;
assign sfile_we = dev_req && dv_sfl && state_wr;
`ifdef FDR
// FDD
wire fdr_int_stb = dv_fdd && fdr_stb;
assign fdr_req = dev_req && dv_fdd;
`endif
// SPI
assign spi_int_stb = dv_spi && spi_stb;
assign spi_wrdata = {8{state_rd}} | (bsel ? data[15:8] : data[7:0]); // send FF on read cycles
assign spi_req = dev_req && dv_spi;
// WTPORT
assign wtp_int_stb = dv_wtp && wtp_stb;
assign wtp_req = dev_req && dv_wtp;
// IDE
assign ide_int_stb = dv_ide && ide_stb;
assign ide_out = data;
assign ide_req = dev_req && dv_ide;
assign ide_rnw = state_rd;
endmodule